• Title/Summary/Keyword: Jangho

Search Result 101, Processing Time 0.02 seconds

Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae

  • Oh, Soojung;Kim, Jangho;Ryu, Hyun Ryul;Lim, Ki-Taek;Chung, Jong Hoon;Jeon, Noo Li
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose: The development of an efficient in vitro cell culture device to process various cells would represent a major milestone in biological science and engineering. However, the current conventional macro-scale in vitro cell culture platforms are limited in their capacity for detailed analysis and determination of cellular behavior in complex environments. This paper describes a microfluidic-based culture device that allows accurate control of parameters of physical cues such as pressure. Methods: A microfluidic device, as a model microbioreactor, was designed and fabricated to culture Saccharomyces cerevisiae and Chlamydomonas reinhardtii under various conditions of physical pressure stimulus. This device was compatible with live-cell imaging and allowed quantitative analysis of physical cue-induced behavior in yeast and microalgae. Results: A simple microfluidic-based in vitro cell culture device containing a cell culture channel and an air channel was developed to investigate physical pressure stress-induced behavior in yeasts and microalgae. The shapes of Saccharomyces cerevisiae and Chlamydomonas reinhardtii could be controlled under compressive stress. The lipid production by Chlamydomonas reinhardtii was significantly enhanced by compressive stress in the microfluidic device when compared to cells cultured without compressive stress. Conclusions: This microfluidic-based in vitro cell culture device can be used as a tool for quantitative analysis of cellular behavior under complex physical and chemical conditions.

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.

Development of Long-Term Storage Technology for Chinese Cabbage - Physiological Characteristics of Postharvest Freshness in a Cooler with a Monitoring and Control Interface

  • Lim, Ki Taek;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.194-204
    • /
    • 2014
  • Purpose: The aim of this study was to develop long-term storage technology for Chinese cabbage in order to extend the period of availability of freshly harvested products. The scope of the paper deals with the use of a cooler with a remote monitoring and control interface in conjunction with use of packaging film. Methods: A cooler with a real time monitoring system was designed as a low-temperature storage facility to control temperature and relative humidity (RH). The effects of storage in high-density polyethylene (HDPE) plastic boxes, 3% chitosan dipping solution, polypropylene film (PEF) with perforations, and mesh packaging bags on physiological responses were investigated. The optimal storage temperature and humidity for 120 days were below $0.5^{\circ}C$ and 90%, respectively. Physiological and biochemical features of cabbage quality were also analyzed: weight loss, texture, and sugar salinity, chlorophyll, reducing sugar, and vitamin C contents. Results: The cooler with a remote monitoring and control interface could be operated by an HMI program. A $0.5^{\circ}C$ temperature and 90% humidity could be remotely controlled within the cooler for 120 days. Postharvest freshness of Chinese cabbages could be maintained up to 120 days depending on the packaging method and operation of the remote monitoring system. In particular, wrapping the cabbages in PEF with perforations resulted in a less than a 5% deterioration in quality. This study provides evidence for efficient performance of plastic films in minimizing post-harvest deterioration and maintaining overall quality of cabbages stored under precise low-temperature conditions with remote monitoring and a control interface. Conclusions: Packaging with a modified plastic film and storage in a precisely controlled cooler with a remote monitoring and control interface could slow down the physiological factors that cause adverse quality changes and thereby increase the shelf life of Chinese cabbage.

The Nitrogen Behavior and Budget in Lake Paldang (팔당호의 질소거동과 수지)

  • Lee, Jangho;Park, Hae-Kyung;Lee, Kyoo;Kim, Eunmi
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • We studied the nitrogen behavior and budget of Lake Paldang from March to December 2008. The particulate nitrogen (PN) concentrations ranged from 7 to 13% of the total nitrogen concentration (TN) in the stream inflows, the downstream outflow, and the lake water. The nitrate nitrogen ($NO_3-N$) concentration ranged from 67 to 78% of the TN. In the three rivers of Lake Paldang, Gyeongan River (In3 site) had the highest average of the TN, 5.037 mgN/L, but North Han River (In2 site) had the lowest average TN, 1.683 mgN/L. South Han River (In1 site) had the average TN of 2.399 mgN/L. In the dam discharge, TN showed the average 2.063 mgN/L. In the lake water, L4 site (Gyeongan River area) had the highest average TN, 3.781 mgN/L, but L3 site (North Han River) had the lowest average TN, 1.587 mgN/L. Total input of nitrogen loads to Lake Paldang was about 30,875 ton/year in 2008. Inflow rivers contributed 30,643 ton/year (South Han River: 18,111 ton/year (59%), North Han River: 11,333 ton/year (37%), and Gyeongan River: 1,199 ton/year (4%)). The atmospheric deposition had 135 ton/year, the nitrogen release from the bottom sediments had 88 ton/year, and macrophytes had 9 ton/year. Total output of nitrogen loads from Lake Paldang was about 31,256 ton/year. The downstream from dam contributed 29,877 ton/year, and the sediment deposition was 1,379 ton/year.

Effects of Micro-Electrical Stimulation on Regulation of Behavior of Electro-Active Stem Cells

  • Im, Ae-Lee;Kim, Jangho;Lim, KiTaek;Seonwoo, Hoon;Cho, Woojae;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Purpose: Stem cells provide new opportunities in the regenerative medicine for human or animal tissue regeneration. In this study, we report an efficient method for the modulating behaviors of electro-active stem cells by micro-electric current stimulation (mES) without using chemical agents, such as serum or induction chemicals. Methods: Dental pulp stem cells (DPSCs) were cultured on the tissue culture dish in the mES system. To find a suitable mES condition to promote the DPSC functions, the response surface analysis was used. Results: We found that a working micro-current of 38 ${\mu}A$ showed higher DPSC proliferation compared with other working conditions. The mES altered the expressions of intracellular and extracellular proteins compared to those in unstimulated cells. The mES with 38 ${\mu}A$ significantly increased osteogenesis of DPSCs compared with ones without mES. Conclusions: Our findings indicate that mES may induce DPSC proliferation and differentiation, resulting in applying to DPSCs-based human or animal tissue regeneration.

Iron Oxide Nanoparticle-incorporated Alginate Capsules as Magnetic Field-assisted Potential Delivery Platforms for Agriculture Pesticides and Biocontrol Agents

  • Lee, Dohyeon;Choi, Kyoung Soon;Kim, Daun;Park, Sunho;Kim, Woochan;Jang, Kyoung-Je;Lim, Ki-Taek;Chung, Jong Hoon;Seonwoo, Hoon;Kim, Jangho
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Purpose: Biocompatible capsules have recently been highlighted as a novel platform for delivering various components, such as drug, food, and agriculture pesticides, to overcome the current limitations of living systems, such as those in agriculture, biology, the environment, and foods. However, few active targeting systems using biocompatible capsules and physical forces simultaneously have been developed in the agricultural engineering field. Methods: Here, we developed an active targeting delivery platform that uses biocompatible alginate capsules and controls movements by magnetic forces for agricultural and biological engineering applications. We designed and fabricated large-scale biocompatible capsules, using custom-made nozzles ejecting alginate solutions for encapsulation. Results: To develop the active target delivery platforms, we incorporated iron oxide nanoparticles in the large-scale alginate capsules. The sizes of alginate capsules were controlled by regulating the working conditions, such as concentrations of alginate solutions and iron oxide nanoparticles. Conclusions: We confirmed that the iron oxide particle-incorporated large-scale alginate capsules moved actively in response to magnetic fields, which will be a good strategy for active targeted delivery platforms for agriculture and biological engineering applications, such as for the controlled delivery of agriculture pesticides and biocontrol agents.

Application of SOPs (Standard Operating Procedures) in National Environmental Specimen Bank (국가환경시료은행의 표준운영절차 적용)

  • Kim, Myungjin;Lee, Jangho;Choi, Taeyoung;Han, Areum;Song, Kyohong;Lee, Eugene;Lee, Jongchun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.327-338
    • /
    • 2012
  • Environmental specimen banks provide the baselines for the scientists and decision makers to do research using the past and present specimens to expect the possible contaminant implications of the future. Many chemicals that are considered harmless now but not found may be found and pose threats in the future. Collected specimens of animals and plants should be conserved without contamination for future analysis. To ensure the availability of samples for the retrospective analysis, the establishment and maintenance of specimen banks in the developing and developed nations has become absolutely necessary. National Environmental Specimen Bank (NESB) established at National Institute of Environmental Research (NIER) in 2009. For the application of NESB, several activities such as standard operating procedures (SOPs) development have been prepared. This study applied the guidelines for sampling and sample treatment of five environmental specimens which had been prepared from 2007 to 2009. The target species were shoots of red pine and Korean pine, leaves of Mongolian oak, eggs of domestic pigeon and muscles and livers of common carp. The NESB will enhance the quality of environmental assessment and environmental monitoring based on real time and retrospective analysis.

Interference Space Reuse and the Adoption Strategy through QoS Constraints in Three-Cell Downlink MIMO Interference Channels (3-Cell 하향링크 MIMO 간섭 채널에서의 간섭 공간 재활용 및 QoS Constraint에 따른 그 적용 방안)

  • Yoon, Jangho;Lee, Hwang Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1093-1105
    • /
    • 2012
  • We propose an interference space reuse (ISR) algorithm for the MU-MIMO design in 3-cell downlink interference channels. Also, we provide a strategy for the adoption of the ISR scheme in the cellular network. In the multicell interference channels, the cell edge users may undergo severe interferences and their signals should be protected from the interferers for reliable transmissions. However, the intra cell users do not only experience small interferences but also they require small transmission power for stable communication. We provide a vector design algorithm based on ISR, where intra cell users are served through reusing the cell edge users' interference space. The performance enhancement reaches 20% compared to the fractional frequency reuse (FFR) scheme combined with IA through the scheduling between the cell edge users and the intra cell users. Also, it can be used to enhance the cell edge throughput when the quality of service (QoS) requirements of the intra cell users are fixed.

Cell Image Processing Methods for Automatic Cell Pattern Recognition and Morphological Analysis of Mesenchymal Stem Cells - An Algorithm for Cell Classification and Adaptive Brightness Correction -

  • Lim, Kitaek;Park, Soo Hyun;Kim, Jangho;SeonWoo, Hoon;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Purpose: The present study aimed at image processing methods for automatic cell pattern recognition and morphological analysis for tissue engineering applications. The primary aim was to ascertain the novel algorithm of adaptive brightness correction from microscopic images for use as a potential image analysis. Methods: General microscopic image of cells has a minor problem which the central area is brighter than edge-area because of the light source. This may affect serious problems to threshold process for cell-number counting or cell pattern recognition. In order to compensate the problem, we processed to find the central point of brightness and give less weight-value as the distance to centroid. Results: The results presented that microscopic images through the brightness correction were performed clearer than those without brightness compensation. And the classification of mixed cells was performed as well, which is expected to be completed with pattern recognition later. Beside each detection ratio of hBMSCs and HeLa cells was 95% and 92%, respectively. Conclusions: Using this novel algorithm of adaptive brightness correction could control the easier approach to cell pattern recognition and counting cell numbers.

The Homogeneity and Short-term Stability Test of Bio-matrix Reference Material for Total Mercury Analysis of Freshwater Fish (담수 어류 총수은 분석용 생물 표준물질 균질성, 안정성 시험평가)

  • Lee, Soo Yong;Lee, Jangho;Chung, David;Shim, Kyu-Young;Lee, Ha-Eun;Park, Ki-Wan
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1033-1040
    • /
    • 2019
  • The National Environmental Specimen Bank (NESB) has set up a plan to develop reference materials in the facility for assuring analytical quality and validating analytical methods for its monitoring samples. Some of the crucial characteristics that reference materials must consist of are homogeneity and stability of both intra and inter-bottles. In this study, we examined the homogeneity and stability of cryogenically-milled muscle samples, from Common Carp (Cyprinus carpio) for total mercury. Homogeneity was tested using ANOVA analysis and regression analysis was used to test short-term stability. The variations of total mercury concentration did not significantly differ between the intra and the inter-bottle (F=0.8, p=0.37). Additionally, relative standard deviation of the total mercury concentration showed low values (2.28%). For the short-term stability test, total mercury variations were not statistically significant as demonstrated by the result of the regression analysis (F ratio = 3.11, p = 0.18). This suggests that the cryogenic-milling process has statistically proven the degree of homogeneity and short-term stability for samples of carp muscles in the chemical analysis for total mercury.