• 제목/요약/키워드: Janggun mine

검색결과 21건 처리시간 0.022초

태백산지구(太白山地區)의 금속광상(金屬鑛床)에 대(對)한 유황(硫黃) 및 탄소안정동위체(炭素安定同位體)에 관(關)한 연구(硏究) (Sulfur and Carbon Isotope Studies of Principal Metallic Deposits in the Metallogenic Province of the Taebaeg Mt. Region, Korea)

  • 이문성
    • 자원환경지질
    • /
    • 제18권3호
    • /
    • pp.247-251
    • /
    • 1985
  • The sulfide and carbonate mineral samples for sulfur and carbon isotope studies were collected from Sangdong, Geodo, Yeonhwa, Shinyemi and Janggun mines which are distributed in the Metallogenetic Province of the Taebaeg Mt. Region. The ${\delta}S^{34}$ values of molybdenite, pyrite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite and galena from the above mines are similar and within the range of +1.66 to +6.77‰ with the exception of chalcopyrite from Geodo mine ranging from -1.58 to 1.96‰, while the sulfide minerals are dominated by positive values between +3.05 and +5.08‰. It is suggested that the major sulfur source is genetically related to the Cretaceous granitic activity. The average ${\delta}C^{13}$ values of calcite from limestone, calcite from calcite vein in ore bodies and granite, and rhodochrosite from ore bodies are -0.60‰, -2.69‰ and -6.00‰, respectively. The data on carbon isotope compositions indicate that the calcite from limestone originated in marine environment, the rhodochrosite in hydrothermal solution, and calcite from calcite vein and granite in the mixing condition of marine and hydrothermal waters. The temperatures of mineralization by the sulfur isotopic composition coexisting pyrite-pyrrhotite from Yeonhwa No.1, sphalerite-galena from Weolam and Dong-jeom of Yeonhwa No.1 mine, sphalerite-galena and pyrite-galena from Janggun mine were $273^{\circ}C$, $460{\sim}511^{\circ}C$, $561{\sim}690^{\circ}C$, $341^{\circ}C$ and $375^{\circ}C$, respectively.

  • PDF

장미암(薔薇岩)-장군광산산(將軍鑛山産) 신종(新種) 퇴적암(堆積岩) (Rhodochrostone - A New Sedimentary Rock from the Janggun Mine, Korea)

  • 김수진
    • 자원환경지질
    • /
    • 제8권2호
    • /
    • pp.63-71
    • /
    • 1975
  • 장군광산(將軍鑛山)에서 산출(産出)되는 암석(岩石)으로서 능(菱)망간석(石)이 주구성광물(主構成鑛物)인 탄산염암(炭酸鹽岩)에 대(對)하여 장미암(薔薇岩)(Rhodochrostone)이라는 신암석명(新岩石名)을 명명(命名)하는 바이다. 이 장미암(薔薇岩)은 석탄암(石炭岩)과 마찬가지로 해저(海底)에서 퇴적작용(堆積作用)에 의(依)하여 생성(生成)된 퇴적암(堆積岩)의 일종(一種)임에도 불구(不拘)하고 이 암석(岩石)에 대(對)하여 지금까지 합리적(合理的)이고 체계적(體系的)인 암석명(岩石名)이 세계(世界)에 걸쳐 없었다. 필자(筆者)가 장미암(薔薇岩) 및 이와 관련(關聯)있는 각종암석(各種岩石)에 대(對)한 광물학적(鑛物學的), 암석학적(岩石學的) 및 화학적(化學的)인 연구(硏究)로서 이들에 대(對)하여 새로운 암석명(岩石名)을 명명(命名)함으로서 망간을 함유(含有)하는 탄산염암(炭酸鹽岩)의 체계적(體系的)인 연구(硏究)가 용이(容易)하게 되었다. 세계각지(世界各地)에서 산출(産出)되는 유사(類似)한 탄산(炭酸)망간암(岩)에 대(對)해서도 필자(筆者)의 분류법(分類法)과 명명법(命名法)이 적용(適用)된다. 필자(筆者)의 분류법(分類法)에 따르면 장군광산(將軍鑛山)의 탄산(炭酸)망간층(層)은 주(主)로 장미암(薔薇岩), 규질장미암(珪質薔薇岩)으로 구성(構成)되어 있다. 탄산(炭酸)망간층(層)의 상반(上盤)과 하반(下盤)의 암석(岩石)은 함(含)망간돌로마이트로 구성(構成)되어 있다. 장군광산산(將軍鑛山産) 탄산(炭酸)망간암(岩)의 평균화학분석치(平均化學分析値)는 Si 3.58, Al 0.34, Fe 3.51, Mn 30.38, Mg 0.49, Ca 3.75, Pb 0.57, Zn 0.48, As 1.53, S 1.84 및 P 0.016%이다. 함유원소(含有元素)들간(間)의 상호관계(相互關係)는 Si/Al=11.31, Mn/Fe=8.34, Mg/Fe=0.14, Ca/Mg=7.70 및 Mn/Ca=8.10이다.

  • PDF

장군광산(將軍鑛山) 아연정광(亞鉛精鑛) 저품위(低品位) 현상(現象)의 원인(原因)과 품위(品位) 상승(上昇) 방안(方案)에 대(對)한 광물학적(鑛物學的) 연구(硏究) (Mineralogical Study of Zinc Ores and Mill Products from the Janggun Mine (With Emphasis on the Cause of Low-grade Concentrate and the Scheme of Raising Its Grade))

  • 김수진
    • 자원환경지질
    • /
    • 제10권3호
    • /
    • pp.99-105
    • /
    • 1977
  • Mineralogical study of original and crushed zinc ores as well as mill products was made in order to find out the cause of low-grade concentrate and the scheme of raising its grade. Low-grade concentrate is due to 1) the abundance of other independent sulfides (arsenopyrite, pyrrhotite, chalcopyrite, stannite) and silicate (quartz) in the zinc concentrate, 2) the presence of composite grains of sphalerite and other sulfides or silicate, 3) the presence of a lot of very fine-grained particle of stannite and chalcopyrite within the sphalerite grains, and 4) the high content of iron in sphalerite. It is proposed that further crushing and other appropriate processing should be made in order to increase the grade of zinc concentrate.

  • PDF

장군광산산(將軍鑛山産) 망간광물의 성인(成因)에 관(關)한 연구(硏究) (Origin of Manganese Carbonates in the Janggun Mine, South Korea)

  • 김규한
    • 자원환경지질
    • /
    • 제19권2호
    • /
    • pp.109-122
    • /
    • 1986
  • 장군(將軍) 연(鉛) 아연(亞鉛) 망간 광상(鑛床)은 캠브로-오도뷔스기(紀)의 장군석회암(將軍石灰岩)과 춘양화강암(春陽花岡岩)과의 접촉부에 발달(發達)하는 접촉교대광상(接觸交代鑛床)이다. 광체(鑛體)는 맥상(脈狀) 및 광통형광체로 상부에는 산화(酸化)망간 및 탄산(炭酸)망간석을 주로 하는 망간광물이 우세하고 하부에는 섬아연석(閃亞鉛石)-방연석(方鉛石)-황철석(黃鐵石)-유비철석(탄산망간석)등의 황화광물(黃化鑛物)이 우세하게 발달하고 있다. 그중 망간광상의 성인에 대하여 열수교대(熱水交代)와 동시퇴적기원(同時堆積起源)으로 그 해석을 달리하고 있으며 탄산(炭酸)망간석(rhodochrosite)이 동시 퇴적기원이란 근거에서 장미암(rhodochrostone)으로 명명된 퇴적암(堆積岩)이 제안되었다(김, 1975). 본 연구에서는 탄산망간석의 기원을 규명하고 이들 광물(鑛物)의 침전환경을 추정하기 위하여 모암인 탄산염암류와 탄산망간석, 산화망간, 방해석 등의 탄소안정동위원소(炭素安定同位元素)(${\delta}^{13}C$)와 산소(酸素)동위원소(${\delta}^{18}O$)를 분석하고 이에 수반되는 황화광물(黃化廣)의 황동위원소(黃同位元素)(${\delta}^{34}S$)를 분석검토하였다. 모암인 석회암 및 돌로마이트질석회암은 ${\delta}^{13}C$=-2.6~+0.1‰ (평균 -1.5‰), ${\delta}^{18}O$=+10.9~+21.9‰ (평균 +17.5‰)이고 탄산망간석은 ${\delta}^{13}C$=-4.2~-6.3‰(평균 -5.3‰), ${\delta}^{18}O$=+7.6~+12.9‰(평균 +10.7‰)로 이들 사이에는 현저한 동위원소값의 차이를 나타내고 있다. 이는 광화용액(鑛化溶液)의 탄소(炭素) 및 산소(酸素)가 모암(母岩)인 탄산염암(炭山鹽岩)의 것과는 동일기원(同一起源)이 아님을 가르킨다. 황동위원소(黃同位元素)(${\delta}^{34}S$)의 값도 +2.0~+5‰로 좁은 범위를 나타내며 화성기원(火成起源)의 황(黃)으로 해석된다. 황동위원소지질온도계(黃同位元素地質溫度計)에 의해 추정된 광상생성온도(鑛床生成溫度)는 $288{\sim}343^{\circ}C$이다. 탄산(炭酸)망간석을 침전시킨 광화용액(鑛化溶液)의 ${\delta}^{18}O_{H_2O}$=+6.6~+10.6‰, ${\delta}^{13}C_{CO_2}$=-4.0~-5.1‰로 심부기원(深部起源)(화성기원(火成起源))으로 해석된다. 따라서 탄산(炭酸)망간석은 마그마성 열수기원에서 침전된것이다. 그러나 망간산화물은 모두 지하수면(地下水面) 상부에서 탄산망간석의 산화(酸化)에 의해 2차적(二次的)으로 형성된 표성산화(表成酸化)망간이며 산화망간광물의 산소는 순환수의 산소보다 석회암(石灰岩)의 산소와 동위원소교환(同位元素交換)이 우세하게 일어난 것으로 해석된다.

  • PDF

장군광산에서 산출되는 (Ca, Mg)-부서라이트의 화학조성과 탈수현상에 관한 연구 (Chemistry and Dehydration Behavior of (Ca, Mg)-buserite from the Janggun Mine, Korea)

  • 최헌수;김수진
    • 한국광물학회지
    • /
    • 제5권2호
    • /
    • pp.102-108
    • /
    • 1992
  • 장군광산의 산화망간광석에서 자연산 (Ca, Mg)-부서라이트를 발견하였는바, 이는 퇴적 또는 변성기원이 능망간석의 표성 풍화에 의해 형성되었다. 부서라이트는 란시아이트와 함께 세립의 부서라이트-란시아이트 염편을 이룬다. 이 (Ca, Mg)-부서라이트-란시아이트는 엽상의 작은 결정으로 산출되나. 이는 세립의 다카넬라이트 집합체 주위에 침전되어 있다. 전자현미분석 결과, 장군 광산의 (Ca, Mg)-부서라이트는 ($Ca_{.08}Mg_{.07}Mn_{.05}6{2+})Mn_{.89}^{4+}O_2{\cdot}1.46H_2O$의 화학식을 갖는다. 상대습도의 조절 및 가열에 의한 탈수실험과 상대습도 조절에 의한 재수화 실험에의하면, (Ca, Mg)-부서라이트는 90${\circ}C$에서 완전히 탈수되며 27%만이 재수화된다. 상대습도 26%에서의 (40$^{\circ}C$로 가열한 경우와 일치하는) 탈수현상은 9.86${\AA}$ 회절선의 9.60${\AA}$으로의 감소 및 강도의 감소로 특징지워진다. 이는 층간의 매우 약하게 결합된 물분자의 방출에 기인한다. 40$^{\circ}C$에서 90$^{\circ}C$까지의 가열에 의한 탈수현상은 001 회절선이 9.60${\AA}$에서 7.42${\AA}$까지 점이적 이동으로 특징지워진다. 이는 층간에 약하게 결합되어 있는 물분자의 방출에 의한 것이다.

  • PDF

장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學) (Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea)

  • 이현구;이찬희;김상중
    • 자원환경지질
    • /
    • 제29권4호
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구 (A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities)

  • 김지윤;최의규;백승한;최혜빈;이정훈
    • 한국지구과학회지
    • /
    • 제37권4호
    • /
    • pp.211-217
    • /
    • 2016
  • 낙동강에는 휴 폐광산의 관리 소홀로 인하여 광미, 광산폐기물, 침출수 등이 산재되어 있으며 여름철 집중 호우기 동안 이 같은 오염물들이 수계에 유입될 수 있다. 경상북도 봉화군 석포면에서 시작해 안동시 안동호 상류에 이르기까지 낙동강에 영향을 미칠 수 있는 광산은 총 105개로 금속광산 60개, 비금속 광산 45개에 달한다. 이를 확인하기 위해서 1년 동안 건기와 우기에 퇴적물, 배출수, 하천수를 채취하였다. 광산의 활동으로 낙동강 주변에 전반적으로 심각한 수준의 중금속 오염을 보이는 퇴적층이 산재해 있음을 확인했다(101개의 시료채취 지점 중 중금속농도를 바탕으로 한 오염지수 10 이상 지점 68개). 하천수 분석 결과에서는 승부, 삼보, 옥방, 장군 광산 등의 지류 시료에서 비소와 카드뮴 농도가 우기 때 증가하는 양상을 보였으며 광산의 배출수와 광미 퇴적층으로 인한 오염이 우려된다. 그러나 광미 퇴적층과 하천수의 화학조성만으로는 오염의 근원이 되는 광산의 유입정도를 분리해 내기 어렵고 이러한 문제는 광해 방지를 어렵게 한다. 광산 활동으로 인한 오염을 효과적으로 방지하기 위해서는 각 오염근원으로부터의 유입비를 분리해 낼 수 있어야 하는데, 그 방법으로써 안정동위원소를 사용하고 이를 통한 오염원 추적 분석 기술 개발에 대한 연구가 필요하다.

한국·장군광산산 보울란저라이트에 대하여; 장군 연·아연·은 구성광물의 지식에 대한 기여 (2) (Boulangerite from the Janggun Mine, Republic of Korea; Contributions to the Knowledge of Ore-Forming Minerals in the Janggun Lead-Zinc-Silver Ores (2))

  • 이현구;이마이 나오야
    • 자원환경지질
    • /
    • 제26권2호
    • /
    • pp.129-134
    • /
    • 1993
  • 장군광산산 보울란저라이트는 침상이나 불규칙한 형태로 방연석, 차골석, 함은 사면동석과 밀접하게 공생하여 남광상에서 산출되며, 특히 남광상 A광체와 B광체 주변의 능망간석대에 그 산출이 뚜렷하다. 어떤 장소, 특히 남광상 B광체 상부에는 방연석, 황철석, 유비철석, 함망간 방해석, 석영 등과 공생하여 작은 정동중에 "머리털"이나 "깃털"모양의 보울 란저라이트 집합체를 형성하기도 한다. 이광물의 반사색은 녹회색을 띠고, 반사다색성은 차골석보다 강하고 이방성이 명료하다. 반사율은 공기중에서 파장이 560nm 일 때 $R_{max.}=42.3%$, $R_{min.}=35.7%$이고, 비커스경도 (VHN)는 50g의 하중에서 $146{\sim}173kg/mm^2$이다. 표준시약 (Short, 1941)에 의한 반응에서는 HN03에서는 즉시 흑색으로 변하지만, 그외의 시약과는 거의 반응하지 않는다. 8개 시료 23개 입자에 대하여 EPMA로 분석한 결과 $Pb_{56.1}Sb_{25.1}S_{18.5}$, Total 99.6 wt.%이고, S= 11로해 계산된 화학식은 $Pb_{5.16}Sb_{3.94}S_{11}$로서 거의 보울란저라이트의 이상적인 화학식 $Pb_5Sb_4S_{11}$을 만족하고 있다. X-선 회절분석에 의해 얻어진 X-선 회절패턴에 나타나는 주요한 회절선은 $3.73\;{\AA}\;(10)$, $3.22\;{\AA}\;(5)$, $3.03\;{\AA}\;(4)$, $2.82\;{\AA}\;(5)$로서 공간군 $C^5_{2h}-P2_{1/a}$ 과 잘 일치한다. 이상의 장군광산산 보울란저라이트는 그 산출상태와 광물의 공생관계로부터 열수성 연-아연-은광화작용의 최후기에 생성된 광물로 판단된다.

  • PDF

장군광산 광미 토양으로부터 아카시아의 중금속 전이에 관한 연구 (Heavy Metal Uptake of Acacia from Tailing soil in Abandoned Jangun Mine, Korea)

  • 정홍윤;김영훈;김정진
    • 한국광물학회지
    • /
    • 제28권2호
    • /
    • pp.173-185
    • /
    • 2015
  • 장군광산은 과거 갱도채굴한 폐금속광산으로 위치는 $N36^{\circ}$ 51'31.59", $E129^{\circ}$ 03'38.91"에 위치하고 있다. 산사면에 적치해 놓은 광미 적치장은 상부에 오염되지 않은 토양으로 약 20 cm 정도 복토한 후 아카시아를 식재해 놓은 상태이다. 광미 적치장에 식재해 놓은 아카시아는 대략 15년생 정도이다. 광미 적치장에서 채취한 토양시료의 중금속 농도는 As (66.43-9325.34 mg/kg), Cd (0.96-1.09 mg/kg), Cu (16.90-57.60 mg/kg), Pb (57.33-945.67 mg/kg), Zn (154.48-278.61 mg/kg)으로 비오염 토양인 대조군의 As (38.98 mg/kg), Cd (0.42 mg/kg), Cu (10.26 mg/kg), Pb (8.21 mg/kg), Zn (46.74 mg/kg) 보다 훨씬 높다. 가장 오염도가 높은 토양에 식재된 아카시아의 잎에서의 As, Cd, Cu, Pb, Zn의 농도는 각각 165.95, 0.04, 10.68, 3.18, 48.11 mg/kg이다. 비오염 토양에 식재되어 있는 아카시아의 잎에서의 중금속 농도는 As 1.31mg/kg, Cu 3.90 mg/kg, Pb 0.22 mg/kg, Zn 11.01 mg/kg이다. 아카시아에서의 중금속의 농집도는 껍질과 잎에서 높으며 심재와 변재에서 낮은 경향을 나타낸다.

경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究) (Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea)

  • 김수진
    • 자원환경지질
    • /
    • 제8권3호
    • /
    • pp.117-124
    • /
    • 1975
  • 경북(慶北) 봉화군(奉化郡) 소재(所在) 장군광산(將軍鑛山)의 표성산화(表成酸化)망간광석중(鑛石中)에서 필자(筆者)에 의(依)하여 발견명명(發見命名)된 신종건물(新種鍵物) 장군석(將軍石)은 국제(國際) 광물학회내연합(鑛物學會內聯合)에 있는 "신종광물(新種鑛物) 및 광물명위원회(鑛物名委員會)"의 공인(公認)을 받았는바 이에 대(對)한 광물학적(鑛物學的)인 연구결과(硏究結果)를 요약(要約)하면 다음과 같다. (1) 장군석(將軍石)은 표성산화(表成酸化)망간 광석중(鑛石中) cementation zone에서 산출(産出)되며, 엔소타이트, 토도로카이트, 방해석(方解石)을 수반(隨伴)한다. 대체로 공동(空洞)에서 수기상(樹技狀) 또는 방사상(放射狀)을 이루는 엽편상(葉片狀) 세립집합체(細粒集合體)(입자(粒子)의 크기 <0.05mm)로 또는 교질상대(膠質狀帶)로 산출(産出)한다. (2) 색(色)은 흑색(黑色)이며 광택(光澤)은 무염(無艶), 조흔(條痕)은 흑갈(黑褐)~암갈(暗褐色)이다. 벽개(劈開)는 한방향(方向)으로 완전(完全)하다. 경도(硬度)(H)=2-3이며 역쇄성(易碎性)이다. 비중(比重)(G)=3.59(실측시(實測植)), 3.58이론치(理論値)이다. (5) 화학분석치(化學分析値)로부터 계산(計算)된 장군석(將軍石)의 화학식(化學式)은 $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$이며, 이상식(理想式)은 $Mn^{4+}{_{5-x}}(Mn^{2+},\;Fe^{3+}){_{1+x}}O_8(OH)_6$ ($x{\approx}0.2$)이다. (6) 장군석(將軍石)은 사방정사 속(屬)하며 X선(線) 분말회절분석(粉末廻折分析) 결과(結果), 단위포(單位胞)의 크기는 $a=9.324{\AA}$, $b=14.05{\AA}$, $c=7.956{\AA}$이며, 단위포(單位胞)의 체적(體積)은 $1042.25{\times}10^{-24}cm$이다. 보솔(輔率) a : b : c=0.663 : 1 : 0.566. 단위포함유수(單位胞含有數) (Z)=4. (7) 시차열분석곡선(示差熱分析曲線)은 $250{\sim}370^{\circ}C$$955^{\circ}C$에서 흡열(吸熱)피크를 보여준다. 전자(前者)는 장군석(將軍石)이 탈수(脫水) 및 산화(酸化)를 받아 $(Mn,\;Fe)_2O_3$이 생성(生成)된데 기인(基因)하며 후자(後者)는 hausmannite 형(型)의 구조(構造)를 갖는 $(Mn,\;Fe)_3O_4$의 생성(生成)에 기인(基因)하는 것이다. $(Mn,\;Fe)_2O_3$는 등보정사이고 $a=9.417{\AA}$이었고 $(Mn,\;Fe)_3O_4$는 정방정사이고 $a=5.76{\AA}$, $c=9.51{\AA}$이었다. (6) 장군석(將軍石)의 적외선흡수분광(赤外線吸收分光)스펙트럼은 $515cm^{-1}$$545cm^{-1}$에서 Mn-O stretching 진동(振動)을, $1025cm^{-1}$에서 O-H bending 진동(振動)을 그리고 $3225cm^{-1}$에서 O-H stretching 진동(振動)을 보여준다. (3) 장군석(將軍石)은 불투명광물(不透明鑛物)이며 현미경하(顯微鏡下)에서 반사도(反射度)는 13~15%이고 복반사율(複反射率)은 공기중(空氣中)에서 현저(顯著)하며 침액중(浸液中)에서 강(强)하다. 반사다색성(反射多色性)은 백색(白色)~담회색(淡灰色)이다. 십자(十字)니콜하(下)에서의 편광색(偏光色)은 공기중(空氣中)에서 청색(靑色)을 띈 황갈(黃褐)~회색(灰色)이고 침액중(浸液中)에서는 黃褐(황갈)~청갈(靑褐)~회색(灰色)이다. 내부반사(內部反射)는 없다. (4) 연마면(硏磨面)에 대(對)한 에칭반응(反應)은 HCl(conc.)와 $H_2SO_4+H_2O_2$ 회색(灰色), 퇴색(褪色), SnCl(sat.): 암색(暗色), $HNO_3$ (conc.) : 회색(灰色), $H_2O_2$ : 거품을 내며 퇴색(褪色). (9) 신종광물(新種鑛物) 장군석(將軍石)은 독특(獨特)한 화학조성(化學組成)과 단위포(單位胞)를 가지고 있어서 이의 발견(發見)은 산화(酸化)망간광물(鑛物)의 분류(分類)와 연구(硏究)에 새로운 방향(方向)과 지침(指針)이 되었다.

  • PDF