• 제목/요약/키워드: Jamming detection

검색결과 72건 처리시간 0.023초

Multistage Pulse Jamming Suppression Algorithm for Satellite Navigation Receiver

  • Yang, Xiaobo;Feng, Jining;Xu, Ying
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.89-96
    • /
    • 2022
  • A novel multistage pulse jamming suppression algorithm was proposed to solve the anti-pulse jamming problem encountered in navigation receivers. Based on the characteristics of the short duration of pulse jamming and distribution characteristics of satellite signals, the pulse jamming detection threshold was derived. From the experiments, it was found that the randomness of pulse jamming affects jamming suppression. On this basis, the principle of the multistage anti-pulse jamming algorithm was established. The effectiveness of the anti-jamming algorithm was verified through experiments. The characteristics of the algorithm include simple determination of jamming detection threshold, easy programming, and complete suppression of pulse jamming.

GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석 (Application and Performance Analysis of Machine Learning for GPS Jamming Detection)

  • 정인환
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.47-55
    • /
    • 2019
  • 최근 GPS 재밍으로 인한 피해가 증가되면서 GPS 재밍을 탐지하고 대비하기 위한 연구가 활발히 진행되고 있다. 본 논문은 다중 GPS 수신채널과 3가지 기계학습을 이용한 GPS 재밍 탐지 방법을 다루고 있다. 제안된 다중 GPS 채널은 항재밍 기능이 없는 상용 GPS 수신기와 항잡음 재밍능력만 있는 수신기, 항잡음/항기만 재밍능력이 있는 수신기로 구성되고 운용자는 각각의 수신기에 수신된 좌표를 비교하여 재밍신호의 특성을 식별할 수 있다. 본 논문에서는 신호특성이 다른 각각의 5개 재밍신호를 입력하고, 3가지 기계학습방법(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree)을 이용하여 재밍탐지 시험을 수행하였다. 시험 결과 머신러닝 기법을 단독으로 사용하였을 때 DT 기법이 96.9% 탐지율로 가장 우수한 성능을 보였으며 이진분류기 기법에 비해 모호성 낮고 하드웨어가 단순하여 GPS 재밍탐지에 효과적임을 확인하였다. 또한, 모호성을 해결해주는 추가기법을 적용할 경우 SVM 기법을 활용할 수 있음을 확인하였다.

Self-Encoded Spread Spectrum with Iterative Detection under Pulsed-Noise Jamming

  • Duraisamy, Poomathi;Nguyen, Lim
    • Journal of Communications and Networks
    • /
    • 제15권3호
    • /
    • pp.276-282
    • /
    • 2013
  • Self-encoded spread spectrum (SESS) is a novel modulation technique that acquires its spreading code from a random information source, rather than using the traditional pseudo-random noise (PN) codes. In this paper, we present our study of the SESS system performance under pulsed-noise jamming and show that iterative detection can significantly improve the bit error rate (BER) performance. The jamming performance of the SESS with correlation detection is verified to be similar to that of the conventional direct sequence spread spectrum (DSSS) system. On the other hand, the time diversity detection of the SESS can completely mitigate the effect of jamming by exploiting the inherent temporal diversity of the SESS system. Furthermore, iterative detection with multiple iterations can not only eliminate the jamming completely but also achieve a gain of approximately 1 dB at $10^{-3}$ BER as compared with the binary phase shift keying (BPSK) system under additive white gaussian noise (AWGN) by effectively combining the correlation and time diversity detections.

Anti-Reactive Jamming Technology Based on Jamming Utilization

  • Xin Liu;Mingcong Zeng;Yarong Liu;Mei Wang;Xiyu Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2883-2902
    • /
    • 2023
  • Since the existing anti-jamming methods, including intelligent methods, have difficulty against high-speed reactive jamming, we studied a new methodology for jamming utilization instead of avoiding jamming. Different from the existing jamming utilization techniques that harvest energy from the jamming signal as a power supply, our proposed method can take the jamming signal as a favorable factor for frequency detection. Specifically, we design an intelligent differential frequency hopping communication framework (IDFH), which contains two stages of training and communication. We first adopt supervised learning to get the jamming rule during the training stage when the synchronizing sequence is sent. And then, we utilize the jamming rule to improve the frequency detection during the communication stage when the real payload is sent. Simulation results show that the proposed method successfully combated high-speed reactive jamming with different parameters. And the communication performance increases as the power of the jamming signal increase, hence the jamming signal can help users communicate in a low signal-to-noise ratio (SNR) environment.

GPS 재방송 재밍신호 검출을 위한 통합 의사잡음신호를 사용한 확장된 ELP 기법 (Extended Early-Late Phase Scheme using Combined Pseudo-Random Noise Signal to Detect GPS Repeat-Back Jamming Signals)

  • 유승수;염동진;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.483-489
    • /
    • 2016
  • This paper proposes a repeat-back jamming signal detection scheme that utilizes a combined pseudo random noise signal that is effective for processing a global positioning system (GPS) repeat-back jamming signal with the early minus late phase scheme to alleviate any existing multipath signal detection. The proposed scheme uses the combined pseudo random noise signal to treat repeat-back jamming signals like similar multipath signals and can effectively detect a repeat-back jamming signal by applying the early minus late phase scheme to a combined pseudo random noise signal. Through a Monte-Carlo simulation, the detection probability of the proposed scheme is better than the one of the conventional scheme under low jamming to signal power ratio.

Protocol-Aware Radio Frequency Jamming inWi-Fi and Commercial Wireless Networks

  • Hussain, Abid;Saqib, Nazar Abbas;Qamar, Usman;Zia, Muhammad;Mahmood, Hassan
    • Journal of Communications and Networks
    • /
    • 제16권4호
    • /
    • pp.397-406
    • /
    • 2014
  • Radio frequency (RF) jamming is a denial of service attack targeted at wireless networks. In resource-hungry scenarios with constant traffic demand, jamming can create connectivity problems and seriously affect communication. Therefore, the vulnerabilities of wireless networks must be studied. In this study, we investigate a particular type of RF jamming that exploits the semantics of physical (PHY) and medium access control (MAC) layer protocols. This can be extended to any wireless communication network whose protocol characteristics and operating frequencies are known to the attacker. We propose two efficient jamming techniques: A low-data-rate random jamming and a shot-noise based protocol-aware RF jamming. Both techniques use shot-noise pulses to disrupt ongoing transmission ensuring they are energy efficient, and they significantly reduce the detection probability of the jammer. Further, we derived the tight upper bound on the duration and the number of shot-noise pulses for Wi-Fi, GSM, and WiMax networks. The proposed model takes consider the channel access mechanism employed at the MAC layer, data transmission rate, PHY/MAC layer modulation and channel coding schemes. Moreover, we analyze the effect of different packet sizes on the proposed jamming methodologies. The proposed jamming attack models have been experimentally evaluated for 802.11b networks on an actual testbed environment by transmitting data packets of varying sizes. The achieved results clearly demonstrate a considerable increase in the overall jamming efficiency of the proposed protocol-aware jammer in terms of packet delivery ratio, energy expenditure and detection probabilities over contemporary jamming methods provided in the literature.

위상코드 펄스압축 레이더의 재밍 효과 (Jamming Effect of Phase-Coded Pulse Compression Radar)

  • 임중수
    • 융합정보논문지
    • /
    • 제9권5호
    • /
    • pp.125-129
    • /
    • 2019
  • 본 논문은 위상코드 펄스압축(PCPC) 레이더의 재밍 효과에 대해서 기술하였다. 대표적인 PCPC 레이더인 Barker code 레이더는 송신 펄스를 13개 또는 31개의 작은 펄스로 분리하여 각 펄스신호를 위상변조하여 송신함으로써 레이더 탐지효율을 높이고 잡음이나 재밍에 대한 영향을 감소시킨다. 일반적으로 레이더는 재밍을 받으면 탐지거리는 짧아지고 탐지 에러율은 높아진다. PCPC 레이더에 잡음재밍이나 반송파 재밍을 실시한 경우에는 펄스코드 융합이 없어서 재밍 영향이 매우 작았지만, DRFM 등을 이용하여 펄스코드 신호를 복재하여 재밍신호로 사용한 동기재밍 경우에는 재밍효과가 크게 나타났다. 특히 펄스코드 신호 복재시간이 길어지면 재밍효과가 증가되는 것을 볼 수 있다. 본 연구는 펄스압축 레이더와 전자전 재밍장치 재밍신호 설계에 유용하게 활용할 수 있다고 판단된다.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

통합의사잡음 신호를 사용한 GNSS의 재방송재밍 검출기법 (A Novel Repeat-back Jamming Detection Scheme for GNSS using a Combined Pseudo Random Noise Signal)

  • 유승수;염동진;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.977-983
    • /
    • 2014
  • A repeat-back jamming signal is an intentionally re-broadcasted GNSS (Global Navigation Satellite System) interference. In this paper, a novel repeat-back jamming detection scheme is proposed. The proposed scheme uses a combined pseudo random noise signal (C-PRN) and is available for a generic GNSS receiver with a single antenna. The C-PRN signal is made by combining several received pseudo random noise signals that had been transmitted from the visible GNSS satellites. Through a Monte-Carlo simulation, the detection probability of a repeat-back jamming signal detected with the proposed scheme is presented.

잡음재밍 효과에 대한 정량적 분석 기법 (A Technique for the Quantitative Analysis of the Noise Jamming Effect)

  • 김성진;강종진
    • 한국군사과학기술학회지
    • /
    • 제8권4호
    • /
    • pp.91-101
    • /
    • 2005
  • In this paper, a technique for the quantitative analysis of the noise jamming effect is proposed. This technique based upon the mathematical modeling for noise jammers and the probability theory for random processes analyses the jamming effect by means of the modeling of the relationship among jammer, radar variables and radar detection probability under noise jamming environment. Computer simulation results show that the proposed technique not only makes the quantitative analysis of the jamming effect possible, but also provides the basis for quantitative analysis of the electronic warfare environment.