• Title/Summary/Keyword: James

Search Result 1,143, Processing Time 0.028 seconds

Oospore Production in Broth Media and Oospore Germination of Phytophthora capsici (고추 역병균(Phytophthora capsici)의 액체배지에서 난포자 형성과 발아)

  • Kim, Byung-Sup;Rin, Ernest James;Coffey, Michael D.
    • The Korean Journal of Mycology
    • /
    • v.37 no.1
    • /
    • pp.114-116
    • /
    • 2009
  • In this study, we selected suitable broth media for mass production of Phytophthora capsici oospore, investigated oospore germination and secured $F_1$ progeny. Carrot broth and V8C broth were determined most effective for oospore formation by calculating and comparing oospore concentration produced from 8 different liquid media. Eleven strains were selected from P. capsici (CapA)/P. tropicalis (CapB) and 9 crosses were formed. Oospore progeny were produced, isolated and germinated from A1 and A2 combinations of P. capsici (CapA) with P tropicalis (CapB). This resulted in a total number of 129 $F_1$ isolates of P. capsici/P. tropicalis with a 0.64-4.0% (mean 1.85%) oospore germination.

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

A Design and Implementation of Mobile E-mail Transmission System Using PC Remote Control Technique (PC 원격 제어 기법을 사용한 모바일 이메일 전송 시스템 설계 및 구현)

  • Song, Hye-Ju;Kim, Hyun-Ju;You, Hyun-Jung;Lee, Jong-Woo
    • Journal of Digital Contents Society
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • Recently, the ubiquitous computing environment being able to connect all kinds of computing elements at anytime anywhere becomes widespread in human life. In this paper, we focus on a PC remote control system using cellular phones. Especially, we design and implement an mobile e-mail transmission system using PC remote control technique. By using our remote controller, cellular phone users can login into their own PC, and then send any file to others by e-mail attachment. To show the correct running of our system, real demonstration results are presented. We are sure that by opening our source code to the public our results can play an important role to encourage development of the various mobile remote control functionalities.

  • PDF

Development of Timely Counter-scenario on Small Scale Engagements (소규모 교전에서의 적시 대응 시나리오 개발 방안 연구)

  • Ahn, Euikoog;Chang, Dae S.;Pyun, JaiJeong;Kwon, Yongjin James;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • Developing future weapons systems has become increasingly complicated and costly. There, modeling and simulation techniques have been highly interested in developing the defense systems. Modeling and simulation techniques provide a means to simulate military training, strategies, military doctrines, and weapons acquisition. In this paper, we proposed a small scale engagement scenario generation method for engagement M&S model. Generated scenario is one of critical factors in the field of commander training, operational analysis, and tactical evaluation. The objective of this paper is to develop a scenario generation method for small scale engagement using the FSA(Finite State Automata) and DFS(Depth First Search) algorithm. The proposed method is verified using a one-on-one combat engagement scenario between assault ship and reconnaissance ship. Also, we are visualized using Delta3D$^{TM}$.

SCANNING ELECTRON MICROSCOPY ANALYSIS OF FUEL/MATRIX INTERACTION LAYERS IN HIGHLY-IRRADIATED U-Mo DISPERSION FUEL PLATES WITH Al AND Al-Si ALLOY MATRICES

  • Keiser, Dennis D. Jr.;Jue, Jan-Fong;Miller, Brandon D.;Gan, Jian;Robinson, Adam B.;Medvedev, Pavel;Madden, James;Wachs, Dan;Meyer, Mitch
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.147-158
    • /
    • 2014
  • In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

Embossed Structural Skin for Tall Buildings

  • Song, Jin Young;Lee, Donghun;Erikson, James;Hao, Jianming;Wu, Teng;Kim, Bonghwan
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • This paper explores the function of a structural skin with an embossed surface applicable to use for tall building structures. The major diagrid system with a secondary embossed surface structure provides an enhanced perimeter structural system by increasing tube section areas and reduces aerodynamic loads by disorienting major organized structure of winds. A parametric study used to investigate an optimized configuration of the embossed structure revealed that the embossed structure has a structural advantage in stiffening the structure, reducing lateral drift to 90% compared to a non-embossed diagrid baseline model, and results of wind load analysis using computational fluid dynamics, demonstrated the proposed embossed system can reduce. The resulting undulating embossed skin geometry presents both opportunities for incorporating versatile interior environments as well as unique challenges for daylighting and thermal control of the envelope. Solar and thermal control requires multiple daylighting solutions to address each local façade surface condition in order to reduce energy loads and meet occupant comfort standards. These findings illustrate that although more complex in geometry, architects and engineers can produce tall buildings that have less impact on our environment by utilizing structural forms that reduce structural steel needed for stiffening, thus reducing embodied $CO^2$, while positively affecting indoor quality and energy performance, all possible while creating a unique urban iconography derived from the performance of building skin.

Surface Characteristics of Fouling Resistant Low-Pressure RO Membranes (상업용 내오염성 저압 RO막의 표면 특성 분석)

  • Hong, Seungkwan;Taylor, James;Norberg, David;Lee, Jinwoo;Park, Chanhyuk;Kim, Hana
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, five commercially available fouling resistant low-pressure RO membranes were investigated for the treatment of seasonally brackish surface water with high organic content (${\approx}24mg/L$). The membranes investigated are LFC-1 (Hydranautics), X20 (Trisep), BW30FR1 (FilmTec), SG (Osmonics), and BE-FR (Saehan). The results of surface characterization revealed that each of these membranes has one or two unique surface characteristics to minimize the adherence of the fouling materials to the membrane. Specifically, the LFC1 membrane features a neutral or low negative surface to minimize electrostatic interactions with charged foulants. The X20, on the other hand, shows a highly negatively charged surface, and thus, is expected to perform well with feed waters containing negatively charged organics and colloids. The BW30FR1 exhibits a relatively neutral and hydrophilic surface, which could be beneficial for lessening organic and/or biofouling. The SG membrane has a smooth surface that makes it quite resistant to fouling, particularly for colloidal deposition. Lastly, BE-FR membrane demonstrated a medium surface charge and a slightly higher hydrophobicity. In the pilot study, all of the four membranes experienced a gradual increase in MTC (water mass transfer coefficient or specific flux) over time, indicating no fouling occurred during the pilot study. The deterioration of permeate water quality such as TDS was also observed over time, suggesting that the integrity of the membranes was compromised by the monochloramine used for biofouling control.

Signaling Through the Murine T Cell Receptor Induces IL-17 Production in the Absence of Costimulation, IL-23 or Dendritic Cells

  • Liu, Xikui K.;Clements, James L.;Gaffen, Sarah L.
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.339-347
    • /
    • 2005
  • IL-17 (IL-17A or CTLA-8) is the founding member of a novel family of inflammatory cytokines, and emerging evidence indicates that it plays a central role in inflammation and autoimmunity. IL-17 is made primarily, if not exclusively by T cells, but relatively little is known about how its expression is regulated. In the present study, we examined the requirements and mechanisms for IL-17 expression in primary mouse lymphocytes. Like many cytokines, IL-17 is induced rapidly in primary T cells after stimulation of the T cell receptor (TCR) through CD3 crossinking. Surprisingly, however, the pattern of regulation of IL-17 is different in mice than in humans, because "costimulation" of T cells through CD28 only mildly enhanced IL-17 expression, whereas levels of IL-2 were dramatically enhanced. Similarly, several other costimulatory molecules such as ICOS, 4-1BB and CD40L exerted only very weak enhancing effects on IL-17 production. In agreement with other reports, IL-23 enhanced CD3-induced IL-17 expression. However, IL-17 production can occur autonomously in T cells, as neither dendritic cells nor IL-23 were necessary for promoting short-term production of IL-17. Finally, to begin to characterize the TCR-mediated signaling pathway(s) required for IL-17 production, we showed that IL-17 expression is sensitive to cyclosporin-A and MAPK inhibitors, suggesting the involvement of the calcineurin/NFAT and MAPK signaling pathways.

Natural Iminosugar Derivatives of 1-Deoxynojirimycin Inhibit Glycosylation of Hepatitis Viral Envelope Proteins

  • Jacob, James R.;Mansfield, Keith;You, Jung-Eun;Tennant, Bud C.;Kim, Young-Ho
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.431-440
    • /
    • 2007
  • A silkworm (Bombyx mori L.) extract known to contain naturally occurring iminosugars, including 1-deoxynojirimycin (1-DNJ) derived from the mulberry tree (Morus alba L.), was evaluated in surrogate HCV and HBV in vitro assays. Antiviral activity of the silkworm extract and one of its purified constituents, 1-DNJ, was demonstrated against bovine viral diarrhea virus (BVDV) and GB virus-B (GBV-B), both members of the Flaviviridae family, and against woodchuck hepatitis virus (WHV) and hepatitis B virus (HBV), both members of the Hepadnaviridae family of viruses. The silkworm extract exhibited a 1,300 fold greater antiviral effect against BVDV in comparison to purified 1-DNJ. Glycoprotein processing of BVDV envelope proteins was disrupted upon treatment with the naturally derived components. The glycosylation of the WHV envelope proteins was affected largely by treatment with the silkworm extract than with purified 1-DNJ as well. The mechanism of action for this therapy may lie in the generation of defective particles that are unable to initiate the next cycle of infection as demonstrated by inhibition of GBV-B in vitro. We postulate that the five constituent iminosugars present in the silkworm extract contribute, in a synergistic manner, toward the antiviral effects observed for the inhibition of intact maturation of hepatitis viral particles and may complement conventional therapies. These results indicate that pre-clinical testing of the natural silkworm extract with regards to the efficacy of treatment against viral hepatitis infections can be evaluated in the respective animal models, in preparation for clinical trials in humans.

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams (섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K.
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.911-922
    • /
    • 2005
  • A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.