• Title/Summary/Keyword: James

Search Result 1,143, Processing Time 0.025 seconds

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme;Sakiru Olarewaju Olagunju;Ruslan Khamitov;Alfrendo Satyanaga;Jong Kim;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2023
  • Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.

Estimating the lateral profile of helical piles using modified p-y springs

  • Hyeong-Joo Kim;Hyeong-Soo Kim;Peter Rey Dinoy;James Vincent Reyes;Yeong-Seong Jeong;Jun-Yong Park;Kevin Bagas Arifki Mawuntu
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A growing trend of utilizing helical piles for soft soil strata to support infrastructure projects is currently observed in Saemangeum, South Korea. Recognized mainly due to its ease of installation and reusability proves to be far more superior compared to other foundation types in terms of sustainability. This study applies modified p-y springs to characterize the behavior of a laterally loaded helical pile with a shaft diameter of 89.1 mm affixed with 3 helices evenly spaced along its embedded length of 2.5 m. Geotechnical soil properties are correlated from CPT data near the test bed vicinity and strain gauges mounted on the shaft surface. A modification factor is applied on the p-y springs to adjust the simulated data and match it to the bending moment, soil resistance and deflection values from the strain gauge measurements. The predicted lateral behavior of the helical pile through the numerical analysis method shows fairly good agreement to the recorded field test results.

Virtual Interactive Construction Education (VICE) using BIM Tools

  • James D. Goedert;Yong K. Cho;Mahadevan Subramaniam;Ling Xiao
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.781-787
    • /
    • 2009
  • Training and process analysis in the construction industry has not taken full advantage of new technologies such as building information modeling(BIM). The purpose of this research is to develop a framework for the virtual interactive construction education system using three dimensional technologies. The modules will simulate the construction process for a facility from start to finish using information drawn from real projects in the built environment. These modules can be used as training tools for new employees where they attempt to optimize time and cost in a virtual environment given a limited number of equipment, time and employee options. They can also be used as a process analysis tool for new construction where a number of situational variables can change leading to exposure of potential risk. These modules would be particularly useful for repetitive construction where the initial project is analyzed for optimization and risk mitigation. This paper describes the framework and shows a residential construction example using a 900 square foot wood frame single family house designed for the United States.

  • PDF

The 2021 Australian/New Zealand Standard, AS/NZS 1170.2:2021

  • John D. Holmes;Richard G.J. Flay;John D. Ginger;Matthew Mason;Antonios Rofail;Graeme S. Wood
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.95-104
    • /
    • 2023
  • The latest revision of AS/NZS 1170.2 incorporates some new research and knowledge on strong winds, climate change, and shape factors for new structures of interest such as solar panels. Unlike most other jurisdictions, Australia and New Zealand covers a vast area of land, a latitude range from 11° to 47°S climatic zones from tropical to cold temperate, and virtually every type of extreme wind event. The latter includes gales from synoptic-scale depressions, severe convectively-driven downdrafts from thunderstorms, tropical cyclones, downslope winds, and tornadoes. All except tornadoes are now covered within AS/NZS 1170.2. The paper describes the main features of the 2021 edition with emphasis on the new content, including the changes in the regional boundaries, regional wind speeds, terrain-height, topographic and direction multipliers. A new 'climate change multiplier' has been included, and the gust and turbulence profiles for over-water winds have been revised. Amongst the changes to the provisions for shape factors, values are provided for ground-mounted solar panels, and new data are provided for curved roofs. New methods have been given for dynamic response factors for poles and masts, and advice given for acceleration calculations for high-rise buildings and other dynamically wind-sensitive structures.

A Low-Cost Approach for Path Programming of Terrestrial Drones on a Construction Site

  • Kim, Jeffrey;Craig, James
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.319-327
    • /
    • 2022
  • Robots for construction sites, although not deeply widespread, are finding applications in the duties of project monitoring, material movement, documentation, security, and simple repetitive construction-related tasks. A significant shortcoming in the use of robots is the complexity involved in programming and re-programming an automation routine. Robotic programming is not an expected skill set of the traditional construction industry professional. Therefore, this research seeks to deliver a low-cost approach toward re-programming that does not involve a programmer's skill set. The researchers in this study examined an approach toward programming a terrestrial-based drone so that it follows a taped path. By doing so, if an alternative path is required, programmers would not be needed to re-program any part of the automated routine. Changing the path of the drone simply requires removing the tape and placing a different path - ideally simplifying the process and quickly allowing practitioners to implement a new automated routine. Python programming scripts were used with a DJI Robomaster EP Core drone, and a terrain navigation assessment was conducted. The study examined the pass/fail rates for a series of trial run over different terrains. The analysis of this data along with video recording for each trial run allowed the researchers to conclude that the accuracy of the tape follow technique was predictable on each of the terrain surfaces. The accuracy and predictability inform a non-coding construction practitioner of the optimal placement of the taped path. This paper further presents limitations and suggestions for some possible extended research options for this study.

  • PDF

A Comparative Analysis of Integrated Project Delivery in Construction Versus Traditional Methods

  • Peressini, Anthony;Bristow, James;Motahari, Mahmoud;Karakouzian, Moses
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.669-677
    • /
    • 2022
  • In this paper, different types of traditional project delivery methods in the construction industry were explored and a comparative analysis against Integrated Project Delivery (IPD) were performed. The advantages of IPD method for all parties, owner/engineer/architect/general contractor, were explored by reviewing the most recent literature. The literature suggests that IPD method should be the dominating project delivery method and diluting the conventional methods such as Design-Bid-Build due to more collaborative and mutually beneficial ways of doing construction; IPD is newer and a more comprehensive method to capture the intrinsic values of project collaboration. This paper presents a comparison of the commonly used methods of project delivery, Design-bid-build, CMAR, & Design-Build and addresses their advantages and disadvantages in differing project scopes and sizes. Several industry leaders with experience in the four types of project delivery addressed were surveyed. The survey results show an overwhelming desire for future projects to go toward IPD from the contractor/owner/RDP. The biggest obstacle facing a project from using IPD appears to be trust.

  • PDF

In-band Network Telemetry based Network Anomaly Detection Scheme (INT 기반 네트워크 이상 상태 탐지 기술 연구)

  • Lim, Jiyoon;Nam, Sukhyun;Yoo, Jae-Hyoung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2019
  • Network anomaly detection is a technology that collects information about flows on a network and detects malicious attacks occurring in a network in real time. In-band Network Telemetry (INT) technology provides more detailed information in real time, that is not provided by existing networks, such as hop latency and queue occupancy. In this paper, we propose the method to implement an anomaly detection system with higher performance by using INT as an input feature of machine learning and verify it through experiments.

Re-engineering Adult Education Programme-an Online Learning Curricular Perspective

  • Mathai, K.J.;Karaulia, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.685-697
    • /
    • 2003
  • The Web based multimedia programmes/courses are becoming widely available in recent years. Most of these courses focus on Behaviorist way of learning, which does not promote deep learning in any way. For Adults this approach further incapacitated, as it does not satisfy Andragogical needs. The search for Constructivist way of learning through the web applied to Indian conditions led to need for developing a curriculum development approach that would promote construction of knowledge through web based collaboration. This paper attempts to reengineer existing curriculum development processes and lays out a framework of‘Problem Based Online Learning (PBOL)’curriculum design. In this context, entire curriculum development life cycle is evolved and explained. This is a part of doctoral work (Ph.D), which is in progress and being undertaken by K.James Mathai, and guided of Dr.D.S.Karaulia.

  • PDF

Antibody Production in Plant Cell Cultures

  • Lee, James M.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.67-78
    • /
    • 1995
  • Monoclonal antibodies (MoAbs) are a highly diversified class of proteins with major research and commercial applications such as diagnostics and therapeutics. Currently, the dominant method for producing MoAbs is through the hybridoma technique. However, this technique is slow, tedious, labor intensive, and expensive. The production of MoAbs in cultured transgenic plant cells can offer some advantages over that in the over that in the mammalian systems. The media to cultivate plant cells are well defined and inexpensive. Contamination by bacteria or fungi is easily monitored in plant tissue cultures. Furthermore, these contaminants are usually not potent pathogens to human beings. In our interdisciplinary research efforts, heavy chain monoclonal antibody (HC MAb) was inserted into Ti plasmid vector and transferred into A. tumefaciens for the transformation in tobacco cells. It was found that 76% of the transformants produced HC MAb. The presence of HC MAb in the cell membrane fraction indicated that the signal peptide was functional and efficient. The change of the HC MAb concentration during a batch culture followed a similar trend as dry cell concentration, indicating that the production of HC MAb was growth related. The long-term repeated subcultures of 11 cell lines showed that there was no obvious trend of neither the decrease nor the increase of the productivity with the repeated subcultures.

  • PDF

Developing an interface strength technique using the laser shock method

  • James A. Smith;Bradley C. Benefiel;Clark L. Scott
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.432-442
    • /
    • 2023
  • Characterizing the behavior of nuclear reactor plate fuels is vital to the progression of advanced fuel systems. The states of pre- and post-irradiation plates need to be determined effectively and efficiently prior to and following irradiation. Due to the hostile post-irradiation environment, characterization must be completed remotely. Laser-based characterization techniques enable the ability to make robust measurements inside a hot-cell environment. The Laser Shock (LS) technique generates high energy shockwaves that propagate through the plate and mechanically characterizes cladding-cladding interfaces. During an irradiation campaign, two Idaho National Laboratory (INL) fabricated MP-1 plates had a fuel breach in the cladding-cladding interface and trace amounts of fission products were released. The objective of this report is to characterize the cladding-cladding interface strengths in three plates fabricated using different fabrication processes. The goal is to assess the risk in irradiating future developmental and production fuel plates. Prior LS testing has shown weaker and more variability in bond strengths within INL MP-1 reference plates than in commercially produced vendor plates. Three fuel plates fabricated with different fabrication processes will be used to bound the bond strength threshold for plate irradiation insertion and assess the confidence of this threshold value.