• Title/Summary/Keyword: James

Search Result 1,136, Processing Time 0.028 seconds

Differentially Expressed Genes in Period 2-Overexpressing Mice Striatum May Underlie Their Lower Sensitivity to Methamphetamine Addiction-Like Behavior

  • Sayson, Leandro Val;Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James Perez;Lee, Hyun Jun;Ortiz, Darlene Mae;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.238-245
    • /
    • 2022
  • Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.

Spinal Angiolipomas : Clinical Characteristics, Surgical Strategies and Prognosis

  • Zhang, Xiaolei;Dong, Sheng;Wang, Guoqin;Zhang, Huifang;Wang, James Jin;Wang, Guihuai
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.49-56
    • /
    • 2022
  • Objective : Angiolipomas are usually found in the subcutaneous tissue of the trunk and limbs. Spinal angiolipomas (SALs) are uncommon and have rarely been reported. We report a series of nine SALs patients who received surgical treatment in our department. To summarize the clinical characteristics of SALs, propose our surgical strategies, and evaluate the effects of the operation. Methods : This was a retrospective review of nine SALs patients who received surgical treatment from August 2015 to March 2020. Total or subtotal resection was determined by the axial localization (dorsal or ventral) and the extent of intervertebral foramen involvement. The outcomes were assessed based on the modified Japanese Orthopaedic Association (mJOA) scoring system utilized before surgery and at various follow-up points. Results : Among the nine patients, the mean mJOA score before surgery was 6.6±2.3, compared with 10.1±1.1 at the last follow-up time point (33.4±11.8 months). All patients achieved good outcomes, even in cases of subtotal resection. Conclusion : Early surgical resection of SALs is recommended, and the specific procedures should be determined by the axial localization (dorsal or ventral) and the extent of intervertebral foramen involvement. Most of the patients had a good prognosis, even in cases of subtotal resection.

Making Southeast Asia Visible: Restoring the Region to Global History

  • Keck, Stephen L.
    • SUVANNABHUMI
    • /
    • v.12 no.2
    • /
    • pp.53-80
    • /
    • 2020
  • Students of global development are often introduced to Southeast Asia by reading many of the influential authors whose ideas were derived from their experiences in the region. John Furnivall, Clifford Geertz, Benedict Anderson and James Scott have made Southeast Asia relevant to comprehending developments far beyond the region. It might even be added that others come to the region because it has also been the home to many key historical events and seminal social developments. However, when many of the best-known writings (and textbooks) of global history are examined, treatment of Southeast Asia is often scarce and in the worst cases non-existent. It is within this context that this paper will examine Southeast Asia's role in the interpretation of global history. The paper will consider the 'global history' as a historical production in order to depict the ways in which the construction of global narratives can be a reflection of the immediate needs of historians. Furthermore, the discussion will be historiographic, exhibiting the manner in which key global histories portrayed the significance of the region. Particular importance will be placed on the ways in which the region is used to present larger historical trajectories. Additionally, the paper will consider instances when Southeast Asia is either profoundly underrepresented in global narratives or misrepresented by global historians. Last, since the discussion will probe the nature of 'global history', it will also consider what the subject might look like from a Southeast Asian point of view. The paper will end by exploring the ways in which the region's history might be augmented to become visible to those who live outside or have little knowledge about it. Visual augmented reality offers great potential in many areas of education, training and heritage preservation. To draw upon augmented reality as a basic metaphor for enquiry (and methodology) means asking a different kind of question: how can a region be "augmented" to become (at least in this case) more prominent. That is, how can the region's nations, histories and cultures become augmented so that they can become the center of historical global narratives in their own right. Or, to put this in more familiar terms, how can the "autonomous voices" associated with the region make themselves heard?

Short-term comparative outcomes between reverse shoulder arthroplasty for shoulder trauma and shoulder arthritis: a Southeast Asian experience

  • Ng, Julia Poh Hwee;Tham, Sherlyn Yen Yu;Kolla, Saketh;Kwan, Yiu Hin;Tan, James Chung Hui;Teo, Timothy Wei Wen;Wee, Andy Teck Huat;Toon, Dong Hao
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.3
    • /
    • pp.210-216
    • /
    • 2022
  • Background: Reverse shoulder arthroplasty (RSA), first introduced as a management option for cuff tear arthropathy, is now an accepted treatment for complex proximal humeral fractures. Few studies have identified whether the outcomes of RSA for shoulder trauma are comparable to those of RSA for shoulder arthritis. Methods: This is a retrospective, single-institution cohort study of all patients who underwent RSA at our institution between January 2013 and December 2019. In total, 49 patients met the inclusion criteria. As outcomes, we evaluated the 1-year American Shoulder and Elbow Surgeons (ASES) and Constant shoulder scores, postoperative shoulder range of motion, intra- and postoperative complications, and cumulative revision rate. The patients were grouped based on preoperative diagnosis to compare postoperative outcomes across two broad groups. Results: The median follow-up period was 32.8 months (interquartile range, 12.6-66.6 months). The 1-year visual analog scale, range of motion, and Constant and ASES functional scores were comparable between RSAs performed to treat shoulder trauma and that performed for arthritis. The overall complication rate was 20.4%, with patients with a preoperative diagnosis of arthritis having significantly more complications than those with a preoperative diagnosis of trauma (34.8% vs. 7.7%). Conclusions: Patients who underwent RSA due to a proximal humeral fracture or dislocation did not fare worse than those who underwent RSA for arthritis at 1 year, in terms of both functional and radiological outcomes.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.

YouTube as a source of patient education information for elbow ulnar collateral ligament injuries: a quality control content analysis

  • Yu, Jonathan S;Manzi, Joseph E;Apostolakos, John M;Carr II, James B;Dines, Joshua S
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.2
    • /
    • pp.145-153
    • /
    • 2022
  • Background: While online orthopedic resources are becoming an increasingly popular avenue for patient education, videos on YouTube are not subject to peer review. The purpose of this cross-sectional study was to evaluate the quality of YouTube videos for patient education in ulnar collateral ligament (UCL) injuries of the elbow. Methods: A search of keywords for UCL injury was conducted through the YouTube search engine. Each video was categorized by source and content. Video quality, reliability, and accuracy were assessed by two independent raters using five metrics: (1) Journal of American Medical Association (JAMA) benchmark criteria (range 0-4) for video reliability; (2) modified DISCERN score (range 1-5) for video reliability; (3) Global Quality Score (GQS; range 1-5) for video quality; (4) ulnar collateral ligament-specific score (UCL-SS; range 0-16), a novel score for comprehensiveness of health information presented; and (5) accuracy score (AS; range 1-3) for accuracy. Results: Video content was comprised predominantly of disease-specific information (52%) and surgical technique (33%). The most common video sources were physician (42%) and commercial (23%). The mean JAMA score, modified DISCERN score, GQS, UCL-SS, and AS were 1.8, 2.4, 1.9, 5.3, and 2.7 respectively. Conclusions: Overall, YouTube is not a reliable or high-quality source for patients seeking information regarding UCL injuries, especially with videos uploaded by non-physician sources. The multiplicity of low quality, low reliability, and irrelevant videos can create a cumbersome and even inaccurate learning experience for patients.

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Experimental and numerical study of an innovative 4-channels cold-formed steel built-up column under axial compression

  • G, Beulah Gnana Ananthi;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.513-538
    • /
    • 2022
  • This paper reports on experiments addressing the buckling and collapse behavior of an innovative built-up cold-formed steel (CFS) columns. The built-up column consists of four individual CFS lipped channels, two of them placed back-to-back at the web using two self-drilling screw fasteners at specified spacing along the column length, while the other two channels were connected flange-to-flange using one self-drilling screw fastener at specified spacing along the column length. In total, 12 experimental tests are reported, covering a wide range of column lengths from stub to slender columns. The initial geometric imperfections and material properties were determined for all test specimens. The effect of screw spacing, load-versus axial shortening behaviour and buckling modes for different lengths and screw spacing were investigated. Nonlinear finite element (FE) models were also developed, which included material nonlinearities and initial geometric imperfections. The FE models were validated against the experimental results, both in terms of axial capacity and failure modes of built-up CFS columns. Furthermore, using the validated FE models, a parametric study was conducted which comprises 324 models to investigate the effect of screw fastener spacing, thicknesses and wide range of lengths on axial capacity of back-to-back and flange-to-flange built-up CFS channel sections. Using both the experimental and FE results, it is shown that design in accordance with the American Iron and Steel Institute (AISI) and Australia/New Zealand (AS/NZS) standards is slightly conservative by 6% on average, while determining the axial capacity of back-to-back and flange-to-flange built-up CFS channel sections.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.