• 제목/요약/키워드: Jacobi Iterative Method

검색결과 14건 처리시간 0.029초

BLOCK ITERATIVE METHODS FOR FUZZY LINEAR SYSTEMS

  • Wang, Ke;Zheng, Bing
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.119-136
    • /
    • 2007
  • Block Jacobi and Gauss-Seidel iterative methods are studied for solving $n{\times}n$ fuzzy linear systems. A new splitting method is considered as well. These methods are accompanied with some convergence theorems. Numerical examples are presented to illustrate the theory.

병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구 (Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E)

  • 권기찬;윤성기
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

RCS 계산을 위한 효율적인 IPO 계산 방법 (Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS)

  • 이현수;정기환;채대영;고일석
    • 한국전자파학회논문지
    • /
    • 제25권5호
    • /
    • pp.601-606
    • /
    • 2014
  • IPO(Iterative Physical Optics) 방법은 대규모 물체의 산란파를 효과적으로 계산하는 고주파 근사 방법 중 하나인 PO(Physical Optics) 방법을 반복적으로 적용하는 계산방법이다. IPO 방법은 일차(first-order) PO 방법에서는 고려하지 못하는 다중 반사를 고려할 수 있어, 산란체 표면에 여기되는 전류의 정확도를 높일 수 있다. 그러므로 산란체의 RCS(Radar Cross Section)를 보다 정확하게 예측할 수 있다. 그러나 IPO 방법은 필요한 적분방정식을 정확하게 풀지 않아 수렴성에 문제가 생긴다. 그러므로 본 논문에서는 IPO 방법의 수렴성을 조절하기 위해, 행렬연산에 사용하는 Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) 그리고 Richardson 방법을 IPO 방법에 적용하였다. 그러므로 대규모 물체의 RCS 계산을 제안된 IPO 방법을 사용하여 효율적으로 계산할 수 있다. 또, 이들의 정확도를 시뮬레이션을 통해 검증하였다.

대형 Sparse 선형시스템 방정식을 풀기위한 효과적인 병렬 알고리즘 (An Efficient Parallel Algorithm for Solving Large Sparse Linear Systems of Equations)

  • 채주환;이진
    • 한국통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.388-397
    • /
    • 1989
  • 본 논문에서는 불규칙하게 분포된 non-zero 원소를 가진 대형 space 행렬로서 표시되는 선형시스템의 해를 능률적으로 얻기 위한 반복 병렬 알고리즘에 대하여 기술하고, 이 알고리즘을 수행하는데 적절한 컴퓨터로서 dataflow컴퓨터 구조를 제안하였다. 이 알고리즘에서는 Jacobi 반복법을 사용하였으며 행렬의 내적을 구하는데 소요되는 시간을 단축함으로서 병렬 수행시간을 단축시켰다.

  • PDF

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR TWO-DIMENSIONAL PROBLEMS

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.477-488
    • /
    • 2012
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the mixed interface condition, controlled by a parameter, can optimize SAM's convergence rate. In [8], one introduced the two-layer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. In this paper, we present a method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • 제29권2호
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.

TWO-LAYER MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • KIM, SANG-BAE
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.383-395
    • /
    • 2016
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [8], one formulated the twolayer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [10]. In this paper, we present an implementation for threedimensional problem.

MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.33-44
    • /
    • 2015
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [8]. In this paper, we present an implementation for three-dimensional problem.