• Title/Summary/Keyword: Jacobi

Search Result 289, Processing Time 0.023 seconds

Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method (유한요소법을 이용한 평판의 동특성 연구)

  • 태순호;이태연;허문회
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

JACOBI'S THETA FUNCTIONS AND THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER AS A SUM OF FOUR TRIANGULAR NUMBERS

  • Kim, Aeran
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.753-782
    • /
    • 2016
  • In this paper we deduce the number of representations of a positive integer n by each of the six triangular forms as $${\frac{1}{2}}x_1(x_1+1)+{\frac{3}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+{\frac{1}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\x_1(x_1+1)+x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\x_1(x_1+1)+{\frac{3}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+3x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+3x_3(x_3+1)+3x_4(x_4+1).$$

The nonlocal theory solution for two collinear cracks in functionally graded materials subjected to the harmonic elastic anti-plane shear waves

  • Zhou, Zhen-Gong;Wang, Biao
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.63-74
    • /
    • 2006
  • In this paper, the scattering of harmonic elastic anti-plane shear waves by two collinear cracks in functionally graded materials is investigated by means of nonlocal theory. The traditional concepts of the non-local theory are extended to solve the fracture problem of functionally graded materials. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips. To make the analysis tractable, it is assumed that the shear modulus and the material density vary exponentially with coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips.

Policy Iteration Algorithm Based Fault Tolerant Tracking Control: An Implementation on Reconfigurable Manipulators

  • Li, Yuanchun;Xia, Hongbing;Zhao, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1740-1751
    • /
    • 2018
  • This paper proposes a novel fault tolerant tracking control (FTTC) scheme for a class of nonlinear systems with actuator failures based on the policy iteration (PI) algorithm and the adaptive fault observer. The estimated actuator failure from an adaptive fault observer is utilized to construct an improved performance index function that reflects the failure, regulation and control simultaneously. With the help of the proper performance index function, the FTTC problem can be transformed into an optimal control problem. The fault tolerant tracking controller is composed of the desired controller and the approximated optimal feedback one. The desired controller is developed to maintain the desired tracking performance at the steady-state, and the approximated optimal feedback controller is designed to stabilize the tracking error dynamics in an optimal manner. By establishing a critic neural network, the PI algorithm is utilized to solve the Hamilton-Jacobi-Bellman equation, and then the approximated optimal feedback controller can be derived. Based on Lyapunov technique, the uniform ultimate boundedness of the closed-loop system is proven. The proposed FTTC scheme is applied to reconfigurable manipulators with two degree of freedoms in order to test the effectiveness via numerical simulation.

A NOTE ON SPECTRAL CHARACTERIZATIONS OF COSYMPLECTIC FOLIATIONS

  • Park, Jin-Suk;Cho, Kwan-Ho;Sohn, Won-Ho;Lee, Jae-Don
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.917-926
    • /
    • 1994
  • Let ($M, G_M, F$) be a (p+q)-dimensional Riemannian manifold with a foliation F of codimension q and a bundle-like metric $g_M$ with respect to F ([9]). Aside from the Laplacian $\bigtriangleup_g$ associated to the metric g, there is another differnetial operator, the Jacobi operator $J_D$, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum isdiscrete as a consequence of the compactness of M. The study of the spectrum of $\bigtriangleup_g$ acting on functions or forms has attracted a lot of attention. In this point of view, the present authors [7] have studied the spectrum of the Laplacian and the curvature of a compact orientable cosymplectic manifold. On the other hand, S. Nishikawa, Ph. Tondeur and L. Vanhecke [6] studied the spectral geometry for Riemannian foliations. The purpose of the present paper is to study the relation between two spectra and the transversal geometry of cosymplectic foliations. We shall be in $C^\infty$-category. Manifolds are assumed to be connected.

  • PDF

The smooth topology optimization for bi-dimensional functionally graded structures using level set-based radial basis functions

  • Wonsik Jung;Thanh T. Banh;Nam G. Luu;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.569-585
    • /
    • 2023
  • This paper proposes an efficient approach for the structural topology optimization of bi-directional functionally graded structures by incorporating popular radial basis functions (RBFs) into an implicit level set (ILS) method. Compared to traditional element density-based methods, a level set (LS) description of material boundaries produces a smoother boundary description of the design. The paper develops RBF implicit modeling with multiquadric (MQ) splines, thin-plate spline (TPS), exponential spline (ES), and Gaussians (GS) to define the ILS function with high accuracy and smoothness. The optimization problem is formulated by considering RBF-based nodal densities as design variables and minimizing the compliance objective function. A LS-RBF optimization method is proposed to transform a Hamilton-Jacobi partial differential equation (PDE) into a system of coupled non-linear ordinary differential equations (ODEs) over the entire design domain using a collocation formulation of the method of lines design variables. The paper presents detailed mathematical expressions for BiDFG beams topology optimization with two different material models: continuum functionally graded (CFG) and mechanical functionally graded (MFG). Several numerical examples are presented to verify the method's efficiency, reliability, and success in accuracy, convergence speed, and insensitivity to initial designs in the topology optimization of two-dimensional (2D) structures. Overall, the paper presents a novel and efficient approach to topology optimization that can handle bi-directional functionally graded structures with complex geometries.

The level set-based topology optimization for three-dimensional functionally graded plate using thin-plate spline

  • Banh, Thanh T.;Luu, Nam G.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.633-649
    • /
    • 2022
  • This paper is first implemented with the bending behavior of three-dimensional functionally graded (3DFG) plates in the framework of level set-based topology optimization (LS-based TO). Besides, due to the suitable properties of the current design domain, the thin-plate spline (TPS) is recognized as a RBF to construct the LS function. The overall mechanical properties of the 3DFG plate are assessed using a power-law distribution scheme via Mori-Tanaka micromechanical material model. The bending response is obtained using the first-order shear deformation theory (FSDT). The mixed interpolation of four elements of tensorial components (MITC4) is also implemented to overcome a well-known shear locking problem when the thickness becomes thinner. The Hamilton-Jacobi method is utilized in each iteration to enforce the necessary boundary conditions. The mathematical formulas are expressed in great detail for the LS-based TO using 3DFG materials. Several numerical examples are exhibited to verify the efficiency and reliability of the current methodology with the previously reported literature. Finally, the influences of FG materials in the optimized design are explained in detail to illustrate the behaviors of optimized structures.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

Novel Optimal Controlling Algorithm for Real-time Integrated-control Smart Manufacturing System (실시간 통합제어를 위한 스마트 제조시스템의 새로운 최적화 알고리즘 설계)

  • Lee, Jooyeoun;Kim, Inyoung;Jeong, Taikyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, we consider the algorithms and numerical analysis for real-time integrated control system and resource management of large-scale manufacturing smart factory system. There various data transmitted on Cyber-Physical-System (CPS) is necessary to control in real time, as well as the terminal and the platform with respective system service. This will be a true smart manufacturing which consisting of existing research results, and a numerical analysis by the parameter-specific information. In this paper, Jacoby calculation to reflect the optimization algorithms that are newly proposed. It also presents a behavior that optimal operational algorithm on CPS which is adapted to the sensing data. In addition, we also verify the excellence of the real-time integrated control system through experimentation, by comparison with the existing research results.

Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method (유한요소법에서 희소행렬의 효율적인 저장을 위한 2차원 가변길이 벡터 저장구조)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.9-16
    • /
    • 2012
  • In this paper, we propose the two dimensional variable-length vector storage format which can be used for efficient storage of sparse matrix in the FEM (finite element method). The proposed storage format is the method storing only actual needed non-zero values of each row on upper triangular matrix with the total rows N, by using two dimensional variable-length vector instead of $N{\times}N$ large sparse matrix of entire equation of finite elements. This method only needs storage spaces of the number of minimum 1 to maximum 5 in 2D grid structure and the number of minimum 1 to maximum 14 in 3D grid structure of analysis target. The number doesn't excess two times although involving index number. From the experimental result, we can find out that the proposed storage format can reduce the memory space more effectively, as the total number of nodes increases, than the existing skyline storage format storing maximum column height.