• Title/Summary/Keyword: JOINT MOMENTS

Search Result 131, Processing Time 0.028 seconds

The Effect of a Wedged Rocker Sole on Ankle Joints during Gait (보행에서 외측 경사진 굽은 밑창이 발목 운동에 미치는 영향 분석)

  • Kwon, Sung-Hyuk;Kim, Choong-Sik;Kim, Hee-Jin;Ryu, Tae-Beum;Chung, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.93-101
    • /
    • 2008
  • Wedged soles and rocker soles are widespread shoe designs used to prevent the disorders and reduce the pain of the lower extremity caused by arthritis or diabetic feet. In this study, the effect of a shoe with a laterally wedged sole and a rocker sole simultaneously was analyzed on the kinematics and kinetics of the ankle joint during normal walking. Eight male participants without a history of lower extremity disorders were recruited. Each participant performed twenty walking cycles for each of three walking conditions: bare foot, wearing normal shoes and wearing shoes with laterally wedged rocker soles. The differences between the three walking conditions were statistically investigated including spatio-temporal variables, angular displacements, joint moments and ground reaction forces. The results showed that the laterally wedged rocker sole decreased the sagittal variation of angular displacements as well as the frontal/sagittal average moment on the ankle joints compared to the flat sole. In addition, the rate of angular displacements and loading decreased during the heel contact phase.

Biomechanical Analysis of the Effect that Various Loads has on the Lower Limbs while Descending Stairs (성인의 하향계단 보행 시 중량에 따른 하지의 운동역학적 변인 분석)

  • Moon, Je-Heon;Chun, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • The purpose of this study was to analyze the effect that various loads have on the lower limb biomechanics. The following variables were measured and analyzed; performance time for each phase, lower limb moments and joint angles, and ground reaction forces. The kinematic and kinetic data was recorded by 2 force platforms and a motion capture system while 12 healthy adults in their twenties stepped down three steps under loads of 0%, 10%, 20% BW. Results are as follows. First, the different loading conditions did not seem to significantly affect the performance times and the joint angles. Second, the largest ground reaction forces were observed at the 1 step at the 10% BW condition. Finally, at the 0% BW loading condition the right hip extension moment was the smallest and the left hip flexion moment was the largest. The results show that there are not any significant changes in the biomechanics of the lower limbs under loading conditions up to 20% BW. Further investigations including more loading conditions with more weights and more additional steps analyzed are needed.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

A study on the lifting posture predictivity of biomechanical cost functions (인체역학적 비용함수들의 lifting 자세 예측도 비교)

  • 최재호;박우진;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.147-150
    • /
    • 1996
  • Human posture prediction and motion simulation methods try to solve inverse kinematic problems using the optimization technique based on the concept of minimum principle. It is very important to select a cost function which relfects the human posture acurately. In this study, lifting postures were predicted using the five biomechanical cost functions and compared with real human postures in order to evaluate the predictivities of the cost functions. The result showed that all the biomechanical cost functions used in this study could not predict lifting postures accurately. The cost function which minimizes the sum of joint moments showed the smallest mean prediction error, while the one which minimizes the MUR showed statistically better performance.

  • PDF

Finite element analysis of a piled footing under horizontal loading

  • Amar Bouzid, Dj.
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2011
  • In this paper a semi-analytical approach is proposed to study the lateral behavior of a piled footing under horizontal loading. As accurate computation of stresses is usually needed at the interface separating the footing (pile) and the soil, this important location should be appropriately modeled as zero-thickness joint element. The piled footing is embedded in elastic soil with either homogeneous modulus or modulus proportional to depth (Gibson's soil). As the pile is the principal element in the piled footing system, a limited parametric study is carried out in order to investigate the influence of footing dimensions and the interface conditions on the lateral behavior of the pile. Hence, the pile behavior is examined through its main governing parameters, namely, the lateral displacement profiles, the bending moments, the shear forces and the soil reactions. The numerical results are presented for Poisson's ratio of 0.2 to represent a large variety of sands and Poisson's ratio of 0.5 to represent undrained clays.

Behavior of Stud Connection Subjected to both Constant Axial and Various Bending Moments (축력과 휨을 받는 스터드볼트 접합부의 거동에 관한 실험적 연구)

  • 김승훈;이태석;서수연;이리형;홍원기;백승대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.535-540
    • /
    • 2000
  • When the stud connection is considered as pin joint in the practical design, it is required to have high deformability. The rotational capacity as well as moment of the connection are evaluated through experimental works. Considered in the test are the reinforcement ratios of concrete member, the magnitude of axial force and connection details. It is shown that the stud connection has some quantity of moment capacity buy on the other hand it has low deformability. The strength and deformability of the connection depend on the axial force and reinforcements around the studs. The strength and ductility of the connection ate increased by using closed C-type.

  • PDF

An Introduction to TLP Tendon Body Design (TLP Tendon Body 설계 소개)

  • Kim, Deok-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.15-22
    • /
    • 2006
  • Global strength check for TLP tendon body can be estimated based on maximum tendon tensions and bending moments, which are resulted in TLP global performance analysis. Final tendon length, especially thread length on Length Adjustment Joint, is easily calculated with water depth at TLP in-place location, TLP lock-off draft and unlocking length of tendon bottom section. And LAJ thread length, which is locked with TLP top tendon connector, should be carefully determined with tendon design and installation tolerances.

  • PDF

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.

미국의 기업가치에 대한 부채와 기업 소유구조의 영향에 관한 소고

  • 김종권
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.05a
    • /
    • pp.325-337
    • /
    • 2005
  • 기존의 논문들은 단순히 기업가치(firm value)가 부채(debt)에 의한 요인들(determinants)에 의하여 좌우된다고 보았으며, 기업의 소유구조(managerial ownership)와 기업가치는 별개(exogenous)로 간주하여 왔다. 이 번 논문에서는 기업 가치를 좌우하는 요인들에 부채 이외에 기업의 소유구조를 내생변수(joint endogenous)로 추정하고, 통계방법으로는 수단변수를 사용하여 GMM(generalized method of moments)를 통하여 추정하기로 한다. 이 연구를 통해서는 부채와 기업 소유구조 사이에 밀접한 상호작용(interrelated)이 있음을 발견하였다. 부채와 기업의 소유구조를 내생화시킴으로써 이번 연구에서는 부채가 기업가치에 약한 부정적인(-) 영향을 주는 것으로 나타났으나, 기업의 소유구조는 기업 가치에 강한 긍정적 요인으로 작용하고 있음을 알 수 있었다. 이와 같이 부채와 기업가치의 약한 부정적인 관계에 대한 선행연구로는 Shea(1997)과 Hahn and Hausman(1999)이 있다. 또한, 기업가치는 시장점유율(market power)과 주가(treasury stock)와 양(+)의 관계에 있음을 알 수 있었다.

  • PDF