• Title/Summary/Keyword: JNK/c-Jun

Search Result 320, Processing Time 0.026 seconds

Influence of Gungguitang-gamibang on the Regulation of Melanogenesis through JNK Signaling Pathway in B16 Melanoma Cells

  • Jeong, Jae-Seong;Ju, Sung-Min;Kim, Kun-Jung;Kim, Eun-Cheol;Park, Hyun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.196-203
    • /
    • 2005
  • Gunggui-tang has been used for the therapy of blood disorders in Hangbang medicine for long time. Also, Glycyrrhiza uralensis has been used for deficientblood patterns with an irregular pulse or palpitations, coughing and wheezing, and heat or cold in the lungs. Melanogenesis is a physiological process resulting in the synthesis of melanin pigments. We investigated whether the water extract of Gunggui-tang plus G. uralensis inhibited melanogenesis in B16 melanoma cells. Because the molecular events connecting the regulation in tyrosinase activity remain to be elucidated, we also aimed to determine whether Gunggui-tang gamibang(GTG) affects tyrosinase at the gene activation level in the cells. First, we showed that GTG inhibited the tyrosinase promoter activity and further, down-regulated the tyrosinase protein activity in ${\alpha}-melanocyte-stimulating$ hormone $({\alpha}-MSH)-treated$ B16 melanoma cells. GTG also resulted in a decrease of melanin content in MSH-induced melanogenesis, indicating that GTG may be a useful drug in studying the regulation of melanogenesis. The pretreatment of GTG significantly prevented phosphotransferase activity of c-Jun N-terminal kinase (JNK1) and transcriptional activation of activating protein-1 (AP-1) in MSH-treated B16 melanoma cells. These findings indicate that GTG inhibits melanogenesis of B16 melanoma cells via suppression of phosphotransferase activity of JNK1 and transcriptional activation of AP-1.

Involvement of ERK1/2 and JNK Pathways in 17${\beta}-estradiol$ Induced Kir6.2 and SK2 Upregulation in Rat Osteoblast-like Cells

  • Kim, Jung-Wook;Yang, Eun-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.199-205
    • /
    • 2006
  • The functional expression of potassium $(K^+)$ channels has electrophysiologically been studied in bone cells from several species, however, their identity and regulation of gene expressions in bone cells are not well known. In the present study, to investigate how $K^+$ channel expressions are regulated by estrogen, we measured changes of transcript levels of various $Ca^{2+}$-activated ($K_{Ca}$) and ATP-sensitive $K^+$ channels in rat osteoblastic ROS 17/2.8 cells after treatment with estrogen. Application of 17${\beta}$-estradiol $(E_2)$ for 24 h and 48 h increased mRNA and protein expressions of inwardly rectifying $K^+$ channel (Kir) 6.2 and type 2 small conductance $K_{Ca}$ channel (SK2), respectively. Combined treatment of cells with 17${\beta}-E_2$ and ICI 182,780, a pure antiestrogen, suppressed 17${\beta}-E_2$-induced alterations of SK2 and Kir6.2 mRNA levels. In addition, treatment of cells with U0126, a specific inhibitor of extracellular receptor kinases (ERK)1/2, and SP600125, a specific inhibitor of c-jun N-terminal kinase (JNK) blocked the enhancing effects of 17${\beta}-E_2$ on SK2 and Kir6.2 protein expressions. On the other hand, blocking of p38 mitogen-activated protein kinase had no effect. Taken together, these results indicate that 17${\beta}-E_2$ modulates SK2 and Kir6.2 expressions through the estrogen receptor, involving ERK1/2 and JNK activations.

Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells

  • Ko, Hyeonseok;Kim, Sun-Joong;Shim, So Hee;Chang, HyoIhl;Ha, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.501-509
    • /
    • 2016
  • Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin's biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35-250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/agent for cancer chemotherapy.

Effects of KHchunggan-tang on the Nonalcoholic Fatty Liver Disease in Palmitate-induced Cellular Model (Palmitate로 유발된 비알코올성 지방간 모델에 대한 KH청간탕(淸肝湯)의 효과 연구)

  • Han, Chang-Woo;Lee, Jang-Hoon
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • Objectives: The aim of this investigation was to evaluate the efficacy of KHchunggan-tang aqueous extract on the experimental nonalcoholic fatty liver disease(NAFLD) induced by palmitate. Materials and Methods: To generate a cellular model of NAFLD, we used HepG2 cells, a human hepatoma cell line, treated with 0.5 mM palmitate. By this cellular model, effects of KHchunggan-tang aqueous extract were evaluated. Intracellular lipid accumulation, free radical formation, and apoptosis were detected by Nile red staining, 2',7'-dichloroflourescin diacetate(H2DCF-DA), and 4',6-diamidino-2-phenylindole(DAPI)/propidium iodide(PI) staining, respectively. Some proteins related with NAFLD were determined by western blot. Results: Typical pathological features of NAFLD occurred in the cellular model. Palmitate increased the levels of intracellular lipid vacuoles, decreased cell viability, and increased apoptosis. Palmitate increased free radical formation and lipid peroxidation, too. However, KHchunggan-tang aqueous extract reduced palmitate-induced pathologic features, i.e. steatosis, free radical formation, and apoptosis. In addition, KHchunggan-tang aqueous extract suppressed palmitate-activated c-Jun N-terminal kinase(JNK) signaling, and SP600125, a JNK inhibitor, significantly reversed the palmitate-induced pathologic changes as KHchunggan-tang aqueous extract. It means that the signaling pathway other than JNK can be involved in the KHchunggan-tang mediated cellular protection of palmitate-treated Hep G2 cells. Conclusions: These results suggest that KHchunggan-tang aqueous extract has hepatoprotective effects on NAFLD with combined properties in cellular steatosis, ROS production, and cytoprotection, and thus may have valuable clinical applications for treatment of this chronic liver disease.

Anti-inflammatory Effects of Fermented Laminaria japonica and Hizikia fusiforme Water Extracts with Probiotics in LPS-stimulated RAW264.7 Macrophage Cell Line (RAW 264.7 대식세포에서 유산균으로 발효한 다시마와 톳의 항염증 효과)

  • Hwang, Yeon-ji;Chae, Insook;Lee, Yunkyoung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to investigate alterations of seaweed composition upon Lactobacillus rhamnosus GG (LGG) fermentation as well as potential anti-inflammatory effects and mechanism (s) of water extracts and fermented water extracts of Laminaria japonica (LJ) and Hizikia fusiforme (HF) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Total polyphenol, total sugar, and reducing sugar contents were measured in LJ and HF water extracts before and after fermentation by LGG. Alterations of inflammatory cytokine levels in cell culture media were measured by ELISA, and levels of phosphorylation of c-jun NH2-terminalkinase (JNK) and extra cellular signal regulated kinase (ERK) were examined by Western blot analysis. LGG fermentation of LJ and HF altered total polyphenol and sugar contents in water extracts of LJ and HF. LPS-induced production of pro-inflammatory cytokines such as IL-6 and $TNF-{\alpha}$ was significantly reduced by HF-f compared to control in RAW264.7 cells. Consistent with reduction of anti-inflammatory cytokine, interleukin (IL)-6, and tumor necrosis factor $(TNF)-{\alpha}$ levels by HF-f, HF-f also significantly reduced phosphorylation of ERK and JNK in LPS-stimulated RAW264.7 cells. In addition, LJ-f and HF also significantly reduced phosphorylation of JNK and ERK induced by LPS in RAW264.7 cells. Overall, our result suggests that HF-f among the four tested seaweed extracts is the most potent anti-inflammatory agent, and its mechanism of action is partially mediated by reduction of JNK and ERK phosphorylation as well as IL-6 and $TNF-{\alpha}$ production in LPS-stimulated RAW264.7 cells.

Protective Effects of EGCG on UVB-Induced Damage in Living Skin Equivalents

  • Kim, So-Young;Kim, Dong-Seok;Kwon, Sun-Bang;Park, Eun-Sang;Huh, Chang-Hun;Youn, Sang-Woong;Kim, Suk-Wha;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.784-790
    • /
    • 2005
  • In this study, we evaluate the effects of (-)-epigallocatechin-3-gallate (EGCG) on ultraviolet B(UVB)-irradiated living skin equivalents (LSEs). Histologically, UVB irradiation induced thinning of the LSE epidermis, whereas EGCG treatment led to thickening of the epidermis. Moreover, EGCG treatment protected LSEs against damage and breakdown caused by UVB exposure. Immunohistochemically, UVB-exposed LSEs expressed p53, Fas, and 8-hydroxy-deoxyguanosine (8-OHdG), all of which are associated with apoptosis. However, EGCG treatment reduced the levels of UVB-induced apoptotic markers in the LSEs. In order to determine the signaling pathways induced by UVB, Western blot analysis was performed for both c-Jun $NH_2$-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which are associated with UVB-induced oxidative stress. UVB activated JNK in the epidermis and dermis of the LSEs, and EGCG treatment reduced the UVB-induced phosphorylation of JNK. In addition, p38 MAPK was also found to have increased in the UVB-exposed LSEs. Also, EGCG reduced levels of the phosphorylation of UVB-induced p38 MAPK. In conclusion, pretreatment with EGCG protects against UVB irradiation via the suppression of JNK and p38 MAPK activation. Our results suggest that EGCG may be useful in the prevention of UVB-induced human skin damage, and LSEs may constitute a potential substitute for animal and human studies.

L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation

  • Kim, Haejung;Hwang, Haein;Lee, Hansoo;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.363-370
    • /
    • 2017
  • Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

Shikonin Modulates Cell Proliferation by Inducing Apoptosis in LLC Cells via MAPK Regulation and Caspase Activation

  • Lee, Soo-Jin;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.501-507
    • /
    • 2005
  • Shikonin is a chemically characterized component of traditional herbal medicine, the root of Lithospermum erythrorhizon and has been shown to possess antitumor activities. Here we investigated anticancer potential of shikonin and its possible mechanism of action in LLC cells. Shikonin inhibited the proliferation of LLC cells in a concentration-dependent manner. It was also demonstrated that shikonin induced apoptosis in LLC cells by Annexin V staining and TUNEL staining analysis. Shikonin treatment was caused that decrease of Bcl-2, activation of caspases and cleavage of PARP. And shikonin also induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Interestingly, the cell proliferation inhibition induced by shikonin was recovered by specific inhibitors of JNK and p38 but the inhibitor of MEK, the upstream kinase of ERK, did not recover. Additionally, shikonin administration at doses of 5 mg/kg in C57BL/6 mice strongly inhibited the primary tumor growth of LLC. Taken together, these results suggest that shikonin may suppress LLC cell proliferation by inducing an apoptotic process via activation of caspases and MAPKs