Browse > Article
http://dx.doi.org/10.14348/molcells.2017.2282

L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation  

Kim, Haejung (Department of Biology, College of National Science, Kangwon National University)
Hwang, Haein (Department of Systems Immunology, College of Biomedical Science, Kangwon National University)
Lee, Hansoo (Department of Biology, College of National Science, Kangwon National University)
Hong, Hyo Jeong (Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University)
Abstract
Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.
Keywords
extrahepatic cholangiocarcinoma; invasion; KRAS mutation; L1CAM; migration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wolterink, S., Moldenhauer, G., Fogel, M., Kiefel, H., Pfeifer, M., Luttgau, S., Gouveia, R., Costa, J., Endell, J., Moebius, U., et al. (2010). Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res. 70, 2504-2515.   DOI
2 Xu, L., Hausmann, M., Dietmaier, W., Kellermeier, S., Pesch, T., Stieber-Gunckel, M., Lippert, E., Klebl, F., and Rogler, G. (2010). Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines. BMC Cancer 10, 302.   DOI
3 Blechacz, B., Komuta, M., Roskams, T., and Gores, G.J. (2011). Clinical diagnosis and staging of cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 8, 512-522.   DOI
4 Bos, J.L. (1989). ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689.
5 Bosman, F.T., Carneiro, F., Hruban, R.H., and Theise, N.D. (2010). WHO classification of tumours of the digestive system (World Health Organization).
6 Brummendorf, T., and Rathjen, F.G. (1993). Axonal glycoproteins with immunoglobulin- and fibronectin type III-related domains in vertebrates: structural features, binding activities, and signal transduction. J. Neurochem. 61, 1207-1219.   DOI
7 Cardinale, V., Semeraro, R., Torrice, A., Gatto, M., Napoli, C., Bragazzi, M.C., Gentile, R., and Alvaro, D. (2010). Intra-hepatic and extra-hepatic cholangiocarcinoma: New insight into epidemiology and risk factors. World J. Gastrointestinal Oncol. 2, 407-416.   DOI
8 Chen, D.L., Zeng, Z.L., Yang, J., Ren, C., Wang, D.S., Wu, W.J., and Xu, R.H. (2013). L1cam promotes tumor progression and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J. Hematol. Oncol. 6, 43.   DOI
9 Churi, C.R., Shroff, R., Wang, Y., Rashid, A., Kang, H.C., Weatherly, J., Zuo, M., Zinner, R., Hong, D., Meric-Bernstam, F., et al. (2014). Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PloS One 9, e115383.   DOI
10 Cho, S., Park, I., Kim, H., Jeong, M.S., Lim, M., Lee, E.S., Kim, J.H., Kim, S., and Hong, H.J. (2016). Generation, characterization and preclinical studies of a human anti-L1CAM monoclonal antibody that cross-reacts with rodent L1CAM. MAbs 8, 414-425.   DOI
11 Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., Bets, D., Mueser, M., Harstrick, A., Verslype, C., et al. (2004). Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Eng. J. Med. 351, 337-345.   DOI
12 Davis, R.J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252.   DOI
13 De Luca, A., Maiello, M.R., D'Alessio, A., Pergameno, M., and Normanno, N. (2012). The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Exp. Opin. Therapeutic Targets 16 Suppl 2, S17-27.
14 Dhanasekaran, D.N., and Reddy, E.P. (2008). JNK signaling in apoptosis. Oncogene 27, 6245-6251.   DOI
15 Downward, J. (1998). Signal transduction. New exchange, new target. Nature 396, 416-417.   DOI
16 Feng, C., He, K., Zhang, C., Su, S., Li, B., Li, Y., Duan, C.Y., Chen, S., Chen, R., Liu, Y., et al. (2014). JNK contributes to the tumorigenic potential of human cholangiocarcinoma cells through the mTOR pathway regulated GRP78 induction. PLoS One 9, e90388.   DOI
17 Jung, J., Son, Y.S., Park, H., Jeon, S.K., Lee, J.W., Choi, S.Y., Kim, J.M., Kwon, Y.G., Hong, H.J., and Min, J.K. (2011). The cell adhesion molecule L1 promotes gallbladder carcinoma progression in vitro and in vivo. Oncol. Rep. 25, 945-952.
18 Giusti, R.M., Cohen, M.H., Keegan, P., and Pazdur, R. (2009). FDA review of a panitumumab (Vectibix). clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist 14, 284-290.   DOI
19 Grumet, M., and Edelman, G.M. (1988). Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms. J. Cell Biol. 106, 487-503.   DOI
20 Jia, S., and Cai, J. (2016). Update on biomarkers in development of anti-angiogenic drugs in gastric cancer. Anticancer Res. 36, 1111-1118.
21 Khan, S.A., Davidson, B.R., Goldin, R.D., Heaton, N., Karani, J., Pereira, S.P., Rosenberg, W.M., Tait, P., Taylor-Robinson, S.D., Thillainayagam, A.V., et al. (2012). Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut 61, 1657-1669.   DOI
22 Kiefel, H., Bondong, S., Hazin, J., Ridinger, J., Schirmer, U., Riedle, S., and Altevogt, P. (2012). L1CAM: a major driver for tumor cell invasion and motility. Cell Adh. Migr. 6, 374-384.   DOI
23 Kim, A.D., Kang, K.A., Kim, H.S., Kim, D.H., Choi, Y.H., Lee, S.J., and Hyun, J.W. (2013). A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4, e750.   DOI
24 Mingo-Sion, A.M., Marietta, P.M., Koller, E., Wolf, D.M., and Van Den Berg, C.L. (2004). Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23, 596-604.   DOI
25 Lee, J., Park, S.H., Chang, H.M., Kim, J.S., Choi, H.J., Lee, M.A., Jang, J.S., Jeung, H.C., Kang, J.H., Lee, H.W., et al. (2012). Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 13, 181-188.   DOI
26 Li, S., Jo, Y.S., Lee, J.H., Min, J.K., Lee, E.S., Park, T., Kim, J.M., and Hong, H.J. (2009). L1 cell adhesion molecule is a novel independent poor prognostic factor of extrahepatic cholangiocarcinoma. Clin. Cancer Res. 15, 7345-7351.   DOI
27 Lin, Y., Zhang, B., Liang, H., Lu, Y., Ai, X., and Chen, X. (2013). JNK inhibitor SP600125 enhances TGF-${\beta}$-induced apoptosis of RBE human cholangiocarcinoma cells in a Smad-dependent manner. Mol. Med. Rep. 8, 1623-1629.   DOI
28 Lubner, S.J., Mahoney, M.R., Kolesar, J.L., Loconte, N.K., Kim, G.P., Pitot, H.C., Philip, P.A., Picus, J., Yong, W.P., Horvath, L., et al. (2010). Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J. Clin. Oncol. 28, 3491-3497.   DOI
29 Min, J.K., Kim, J.M., Li, S., Lee, J.W., Yoon, H., Ryu, C.J., Jeon, S.H., Lee, J.H., Kim, J.Y., Yoon, H.K., et al. (2010). L1 cell adhesion molecule is a novel therapeutic target in intrahepatic cholangiocarcinoma. Clin. Cancer Res. 16, 3571-3580.   DOI
30 Patel, T. (2011). Cholangiocarcinoma--controversies and challenges. Nat. Rev. Gastroenterol. Hepatol. 8, 189-200.   DOI
31 Raveh, S., Gavert, N., and Ben-Ze'ev, A. (2009). L1 cell adhesion molecule (L1CAM). in invasive tumors. Cancer Lett. 282, 137-145.   DOI
32 Philip, P.A., Mahoney, M.R., Allmer, C., Thomas, J., Pitot, H.C., Kim, G., Donehower, R.C., Fitch, T., Picus, J., and Erlichman, C. (2006). Phase II study of erlotinib in patients with advanced biliary cancer. J. Clin. Oncol. 24, 3069-3074.   DOI
33 Putra, J., de Abreu, F.B., Peterson, J.D., Pipas, J.M., Mody, K., Amos, C.I., Tsongalis, G.J., and Suriawinata, A.A. (2015). Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing. Exp. Mol. Pathol. 99, 240-244.   DOI
34 Ramirez-Merino, N., Aix, S.P., and Cortes-Funes, H. (2013). Chemotherapy for cholangiocarcinoma: An update. World J. Gastrointestinal Oncol. 5, 171-176.   DOI
35 Shields, J.M., Pruitt, K., McFall, A., Shaub, A., and Der, C.J. (2000). Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147-154.   DOI
36 Roberts, S.K., Ludwig, J., and Larusso, N.F. (1997). The pathobiology of biliary epithelia. Gastroenterology 112, 269-279.   DOI
37 Saijyo, S., Kudo, T., Suzuki, M., Katayose, Y., Shinoda, M., Muto, T., Fukuhara, K., Suzuki, T., and Matsuno, S. (1995). Establishment of a new extrahepatic bile duct carcinoma cell line, TFK-1. Tohoku J. Exp. Med. 177, 61-71.   DOI
38 Samatov, T.R., Wicklein, D., and Tonevitsky, A.G. (2016). L1CAM: Cell adhesion and more. Prog. Histochem. Cytochem. 51, 25-32.   DOI
39 Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl. J. Med. 344, 783-792.   DOI
40 Simbolo, M., Fassan, M., Ruzzenente, A., Mafficini, A., Wood, L.D., Corbo, V., Melisi, D., Malleo, G., Vicentini, C., Malpeli, G., et al. (2014). Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget 5, 2839-2852.   DOI
41 Smith, I.E. (2006). Trastuzumab for early breast cancer. Lancet 367, 107.   DOI
42 Taylor, C.A., Zheng, Q., Liu, Z., and Thompson, J.E. (2013). Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol. Cancer 12, 35.   DOI
43 Rizvi, S., Borad, M.J., Patel, T., and Gores, G.J. (2014). Cholangiocarcinoma: molecular pathways and therapeutic opportunities. Semin. Liver Dis. 34, 456-464.   DOI
44 Wagner, E.F., and Nebreda, A.R. (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537-549.   DOI
45 Valle, J., Wasan, H., Palmer, D.H., Cunningham, D., Anthoney, A., Maraveyas, A., Madhusudan, S., Iveson, T., Hughes, S., Pereira, S.P., et al. (2010). Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Eng. J. Med. 362, 1273-1281.   DOI
46 Vivanco, I., Palaskas, N., Tran, C., Finn, S.P., Getz, G., Kennedy, N.J., Jiao, J., Rose, J., Xie, W., Loda, M., et al. (2007). Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11, 555-569.   DOI
47 Altevogt, P., Doberstein, K., and Fogel, M. (2016). L1CAM in human cancer. Int. J. Cancer 138, 1565-1576.   DOI
48 Arlt, M.J., Novak-Hofer, I., Gast, D., Gschwend, V., Moldenhauer, G., Grunberg, J., Honer, M., Schubiger, P.A., Altevogt, P., and Kruger, A. (2006). Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. Cancer Res. 66, 936-943.   DOI
49 Vojtek, A.B., and Der, C.J. (1998). Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19925-19928.   DOI
50 Voss, J.S., Holtegaard, L.M., Kerr, S.E., Fritcher, E.G., Roberts, L.R., Gores, G.J., Zhang, J., Highsmith, W.E., Halling, K.C., and Kipp, B.R. (2013). Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. Hum. Pathol. 44, 1216-1222.   DOI
51 Wei, C.H., Lee, E.S., Jeon, J.Y., Heo, Y.S., Kim, S.J., Jeon, Y.H., Kim, K.H., Hong, H.J., and Ryu, S.E. (2011). Structural mechanism of the antigen recognition by the L1 cell adhesion molecule antibody A10-A3. FEBS Lett. 585, 153-158.   DOI
52 Weidle, U.H., Eggle, D., and Klostermann, S. (2009). L1-CAM as a target for treatment of cancer with monoclonal antibodies. Anticancer Res. 29, 4919-4931.
53 Weston, C.R. and Davis, R.J. (2002). The JNK signal transduction pathway. Curr. Opin. Genet. Dev. 12, 14-21.   DOI
54 Weston, C.R. and Davis, R.J. (2007). The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142-149.   DOI
55 Blechacz, B., and Gores, G.J. (2008). Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 48, 308-321.
56 Bengala, C., Bertolini, F., Malavasi, N., Boni, C., Aitini, E., Dealis, C., Zironi, S., Depenni, R., Fontana, A., Del Giovane, C., et al. (2010). Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial. Br. J. Cancer 102, 68-72.   DOI