• Title/Summary/Keyword: JMatPro$DEFORM^{TM}$-HT

Search Result 2, Processing Time 0.015 seconds

Prediction of Phase Transformation of Boron Steel Sheet during Hot Press Forming using Material Properties Modeler and DEFORMTM-HT (보론 강판의 핫 프레스 포밍 공정 시 재료 물성 모델러와 DEFORMTM-HT를 활용한 상 변태 예측)

  • Kang, K.P.;Lee, K.H.;Kim, Y.S.;Ji, M.W.;Suh, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.249-256
    • /
    • 2008
  • Combined phase transformation and heat transfer was considered on the simulation of hot press forming process, using material properties modeler, $JMatPro^{(R)}$ and a finite element package, $DEFORM^{TM}$-HT. In order to obtain high temperature mechanical properties and flow curves for different phases, a material properties modeler, $JMatPro^{(R)}$ was used, avoiding expensive and extensive high temperature materials tests. The results successfully show that the strength of hot press forming parts may exhibit different strength in the same parts, depending on the contact of blank with tooling. It was also shown effectively that the strength of the parts can be controlled by designing appropriate cooling paths and coolants. This was shown in terms of different heat convection coefficient in the calculation. Overall, current combination of software was shown to be an effective tool for the tool and process design of hot forming process, although the material modeler needs to be additionally verified by an appropriate set of high temperature materials test.

Application and Verification of Virtual Manufacturing to Hot Press Forming Process with Boron Steel (보론강 핫 프레스 포밍 공정에 대한 가상생산 응용 및 검증)

  • Suh, Yeong-Sung;Ji, Min-Wook;Lee, Kyung-Hoon;Kim, Young-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • A virtual manufacturing system that is composed of JMatPro, a material modeler and $DEFORM^{TM}$-HT, a finite element package is applied to the hot press forming process: high temperature material properties for each phase such as flow stress, elastic modulus, Poisson's ratio, thermal expansion coefficient, in addition to TTT curve are predicted by JMatPro and taken into $DEFORM^{TM}$-HT to predict the material behavior considering phase transformation and heat transfer simultaneously. In order to verify the accuracy of computation, the residual stress and the springback were compared with the experimental measurements. Both the predicted and measured principal residual stresses and amount of springback were in good agreement. It was also found that the residual stresses generated from hot press forming are not negligible as it has been generally assumed, although the springback deformation is quite small.