• Title/Summary/Keyword: J-Rock

Search Result 174, Processing Time 0.027 seconds

Introduction of the M(i,j,k)BCP and Risk Assessment of Underground Limestone Mine (재난관리체계(M(i,j,k)BCP) 제안과 석회석광산의 리스크 평가)

  • Lee, Seong Min;Kim, Sun-Myung;Lee, Yeon Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.383-392
    • /
    • 2012
  • This study introduces $M_{(i,j,k)}BCP$ (Mining Business Continuity Planning) which is the smart management system of mine disasters to achieve the safe and eco-friendly mining. Where, 'i' is mine kinds, 'j' is mining processes, and 'k' is risks at process respectively. By specifically setting 'i=1=limestone mine', this study also suggests that $M_{(i,j,k)}BCP$ is the smart management system of limestone mine. Mining risks used in this study were obtained from professional survey and literature review. This study classified these risks by five different mining processes and reduced risk numbers approximately 60 to 26. And they were all allocated into $M_{(i,j,k)}BCP$ and assessed. To do assess risks, this study used four risk indexes which are probability, casualty, facility loss, and discontinuity respectively. By the results of the assessment of risks, results could be four specific groups based on their causes and impacts. In addition, one of the results showed that the most possible risks at limestone mine was the roof-fall and rock-fall in digging process. This result means that $M_{(1,2,1)}BCP$ should be established as a first priority at limestone mine.

Compressive Fracture Behaviors of Transversely Isotropic Jointed Rock Model with an Opening (공동을 포함하는 횡등방성 절리암반 모델의 압축 파괴거동)

  • SaGong, Myung;Kim, Se-Chul;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.58-63
    • /
    • 2009
  • Biaxial compression test was conducted on a transversely isotropic synthetic jointed rock model for the understanding of the fracture behaviors of a sedimentary or metamorphic rocks with well developed bedding or foliation in uni-direction. The joint angles employed for the model are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made of early strength cement. From the biaxial compression test, initiation propagation of tensile cracks at norm to the joint angle was found. The propagated tensile cracks eventually developed rock blocks, which was dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The experiment results were validated from the simulation by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows a progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

  • PDF

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF

Applied Rock Mechanics - Safety and Control of the Environmental (제 1주제 암반공학, 환경안전과 제어)

  • van der Merwe, J. Nielen
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.281-282
    • /
    • 1999
  • 제 1주제에는 총 106편의 논문이 접수되었으며, 이 논문들의 내용, 성격, 해석방법 등을 정리하였다. 일반적으로 논문의 수준은 모두 우수했으며, 구두발표를 위한 논문을 선정하는데 어려움이 있었다. 해석적인 방법에 있어서는 수치해석 방법이, 계측에 있어서는 직접 계측방법이 가장 일반적으로 사용되었다. 논문 면 수에 제한이 있었기 때문에 대부분의 저자들은 자세한 해석내용을 생략하고 있었다. 특이한 점은 암석역학과 유체동력학과의 접합이라 할 수 있으며, 암반 안전성에 미치는 시간의 영향 등에 대한 연구가 계속적으로 이루어져야 한다.

  • PDF

Rock Dynamics and Tectonophysics (제 3주제 암석 동력학 및 지각물리학)

  • McGarr, I.;Dubinski, J.
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.283-284
    • /
    • 1999
  • 지하에서의 안전성과 광체의 경제적 회수가 광업계의 주요관심분야이다. 지하구조물과 주변 응려의 상호작용으로 채굴로 인한 지진활동(seismicity)이 지하안정성과 생산성에 결정적인 영향을 미치며, 암석절단, 천공, 발파기술 등을 적절하게 사용하는 것이 주요관심의 대상이 된다. 이 들에 대한 기초적인 이해는 석유 생산이나 천공장비 개발 등에도 적용될 수 있다.

  • PDF

A REVIEW OF THE ROCK MECHANICAL AND ENGINEERING GEOLOGICAL RESEARCH AT GJOVIK OLYMPIC CAVERN (GJOEVIK올림픽 경기장(암반역학 및 지질공학 분야))

  • Barton, N.;By, T.L.;Chryssanthakis, P.;Tunbridge, L.;Kristiansen, J.;Loset, F.;Bhasin, R.K.;Westerdahl, H.;Vik, G.;Myrvang, A.;Hansen, S.E.;Lv, Ming;Stjern, G.;Ruistven, H.;Kjorholt, H.;Lee, M.S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10b
    • /
    • pp.235-247
    • /
    • 1993
  • The 62 m span Olympic lee Hockey cavern in Gjovik, Norway, is located in jointed gneiss of average RaD = 70% and has a rock cover of only 25 to 50m, thus posing challenging design p problems. The investigations prior to construction included two types of stress measurements, cross-hole seismic tomography, special coe logging, Q-system classification and numerical modelling with UDEC-BB. Predicted maximum deformations were 4 to 8 mm; surprisingly small due to the high horizontal stresses recorded. Extensometer (MPBX) installations from the surface prior to construction, precision surface levelling and MPBX installed from inside the cavern give a combined measure of maximum deformations in the range 7 to 8 mm with the 62 m span fully e excavated, and three adjacent caverns for the Postal Services also completed.

  • PDF

Influence of TBM operational parameters on optimized penetration rate in schistose rocks, a case study: Golab tunnel Lot-1, Iran

  • Eftekhari, A.;Aalianvari, A.;Rostami, J.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.239-248
    • /
    • 2018
  • TBM penetration rate is a function of intact rock properties, rock mass conditions and TBM operational parameters. Machine rate of penetrationcan be predicted by knowledge of the ground conditions and its effects on machine performance. The variation of TBM operational parameters such as penetration rate and thrust plays an important role in its performance. This study presents the results of the analysis on the TBM penetration rates in schistose rock types present along the alignment of Golab tunnel based on the analysis of a TBM performance database established for every stroke through different schistose rock types. The results of the analysis are compared to the results of some empirical and theoretical predictive models such as NTH and QTBM. Additional analysis was performed to find the optimum thrust and revolution per minute values for different schistose rock types.

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.