• Title/Summary/Keyword: J-Q 해석

Search Result 28, Processing Time 0.026 seconds

A Study on the Ultimate Point Resistance of Rock Socketed Drilled Shafts Using FLAC3D and UDEC (유한차분해석과 개별요소해석을 이용한 암반에 근입된 현장타설말뚝의 선단지지력 연구)

  • Lee, Jae-Hwan;Cho, Hoo-Yeon;You, Kwang-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.29-39
    • /
    • 2012
  • The maximum unit point resistance ($q_{max}$) of rock socketed drilled shafts subjected to axial loads was investigated by a numerical analysis. A 3D Finite Difference Method (FDM) analysis and a Distinct Element Method (DEM) analysis were performed with varying rock elastic modulus (E), discontinuity spacing ($S_j$), discontinuity dip angle ($i_j$), and pile diameter (D). Based on the results of obtained, it was found that the ultimate point resistance ($q_{max}$) increased as rock elastic modulus (E) and rock discontinuity spacing ($S_j$) increased. But, it was found that $q_{max}$ decreased as pile diameter (D) increased. As for the influence of the dip angle of rock discontinuity ($i_j$), it was shown that $q_{max}$ decreased up to 50% of maximum value within the range of $0^{\circ}$ < $i_j$ < $60^{\circ}$ due to the shear failure at rock discontinuities. Furthermore, it was found that if $20^{\circ}{\leq}i_j{\leq}40^{\circ}$, influence of $i_j$ should be taken into account because $q_{max}$ tended to approach a minimum value as $i_j$ approached a value near the friction angle of the discontinuity (${\phi}_j$).

A Study on the Fracture Behavior of a Crack in Gas Pipelines Considering Constraint Effects (구속효과를 고려한 가스배관 결함의 파괴거동해석)

  • Shim, Do-Jun;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.1-6
    • /
    • 2000
  • FFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it assumes that J-integral uniquely characterizes crack-tip stress-strain fields. However, it has been shown that it is not sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to Investigate the fracture behavior of a crack in gas pipeline by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature$(24^{\circ}C)$ and low temperature$(-40^{\circ}C)$ to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects.

  • PDF

The Experimental Method of Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.285-291
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the inplane strain. Also, the effect of location where the displacement and strain are measured is explored.

  • PDF

Consideration of Constraint Effect of Surface Cracks Under PTS Conditions Using J-Q Approach (PTS 사고하에서 J-Q해석법을 이용한 표면균열의 구속효과 고찰)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In recent years, the integrity of reactor Pressure Vessel(RPV) under pressurized thermal shock (PTS) accident has been treated as one of the most critical issues. Under PTS condition, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. As a result, cracks on inner surface of RPV may experience elastic-plastic behavior which can be characterized by J-integral. In such a case, however, J-integral may possibly lose its vapidity due to the constraint effect. The degree of constraint effect is influenced by the loading mode, crack geometry and material properties. In this paper, in order to investigate the effect of clad thickness and crack geometry on constraint effect, three dimensional finite element analyses were performed for various surface cracks. Total of 27 crack geometries were analyzed and results were presented by a two-parameter characterization based on the J-integral and the f-stress.

An Experimental Method for Measuring Q (Q의 실험적 측정법)

  • Kim, Dong-Hak;Lee, Jeong-Hyun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1607-1613
    • /
    • 2003
  • An experimental method to measure Q-parameter in-situ is described. The basic idea comes from the fact that the side necking near a crack tip indicates the loss of stress triaxiality, which can be scaled by Q. From the out-of-plane displacement and the in-plane strain near the surface of side necking, stress field averaged through the thickness is calculated and then Q is determined from the difference between the stress field and the HRR field corresponding to the identical J-integral. To prove the validity, three-dimensional finite element analysis has been performed for a CT configuration with side-groove. Q-value which was calculated directly from the near-tip stress field is compared with that determined by simulating the experimental procedure according to the proposed method, that is, the Q-value determined from the lateral displacement and the in-plane strain. In addition, the effect of location where the displacement and strain are measured is explored.

A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects (구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구)

  • Sim, Do-Jun;Jang, Yeong-Gyun;Choe, Jae-Bung;Kim, Yeong-Jin;Kim, Cheol-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

A Study on the Fracture Behavior of a Crack in 9% Ni Steel Considering Constraint Effect (구속효과를 고려한 9% Ni강 균열의 파괴거동 해석에 관한 연구)

  • Kim, Young Kyun;Yoon, Ihn soo;Kim, Jae Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.14-21
    • /
    • 2021
  • Inner shell material of LNG storage tanks that store ultra-low temperature LNG at -162℃ requires structural integrity assessment of a crack-like defect. From the viewpoint of conventional fracture mechanics, the assessment has mainly performed by single parameter using stress intensity factor K, J-integral and CTOD. However, the stresses in a material of crack tip are not unique caused by constraint loss due to size and geometry of the structure. Various attempts have been made to complement a single parameter fracture mechanics, typically with Q-stress. In this paper, we have performed a two-parameter approach by deriving the Q-stress coupling with J-integral suitable for the evaluation of the crack tip stress field in the non-linear elastic region. A quantitative evaluation of the constraint effect has performed by using the J-Q approach. It was evaluated that the SENB type specimen had a crack ratio of 0.1 to 0.7 and the wide type specimen had a crack ratio of 0.2 to 0.6.

On the historical investigation of Bernoulli and Euler numbers associated with Riemann zeta functions (수학사적 관점에서 오일러 및 베르누이 수와 리만 제타함수에 관한 탐구)

  • Kim, Tae-Kyun;Jang, Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.71-84
    • /
    • 2007
  • J. Bernoulli first discovered the method which one can produce those formulae for the sum $S_n(k)=\sum_{{\iota}=1}^n\;{\iota}^k$ for any natural numbers k. After then, there has been increasing interest in Bernoulli and Euler numbers associated with Riemann zeta functions. Recently, Kim have been studied extended q-Bernoulli numbers and q-Euler numbers associated with p-adic q-integral on $\mathbb{Z}_p$, and sums of powers of consecutive q-integers, etc. In this paper, we investigate for the historical background and evolution process of the sums of powers of consecutive q-integers and discuss for Euler zeta functions subjects which are studying related to these areas in the recent.

  • PDF

Output characteristics of intracavity frequency doubling of laser-diode end-pumped Nd:S-VAP laser (반도체레이저 단면여기 Nd:S-VAP 레이저의 내부공진기 제2고조파 출력 특성)

  • 박준학
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.294-298
    • /
    • 2000
  • The output characteristics of intracavity frequency doubling of laser-diode end-pumped Nd:S-VAP laser were investigated. Nd:S-VAP is suitable for a microchip laser medium, which has a low threshold property because of a very high value of the stimulated emission cross-section and lifetime product. The threshold energy measured was 81 J.ll. The second harmonic output energy measured was $126\mu\textrm{J}$at a pump energy of $2\mu\textrm{J}$. We described for intracavity frequency doubling by using theoretical calculations. Q-switched second harmonic energy measured was $15\mu\textrm{J}$per pulse with a pulse-width of 26 ns. at a pump energy of 2 mJ and an $M^2$ of 1.47 represented a good beam quality. ality.

  • PDF