• Title/Summary/Keyword: J-격자

Search Result 313, Processing Time 0.029 seconds

CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

Development of Analysis Technique for a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 가스차단기 설계 기술 개발)

  • Lee, J.C.;Oh, I.S.;Min, K.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.523-528
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multicomponent geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. The technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increases.

  • PDF

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

CFD Analysis of Aerodynamic Characteristics of Regional Turboprop Aircraft Propeller (중형 터보프롭 항공기급 프로펠러 공력특성 전산해석)

  • Choi, W.;Choi, J.S.;Jung, I.M.;Kim, J.H.;Lee, I.W.;Han, S.H.;Won, Y.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.447-452
    • /
    • 2011
  • Propeller shall have high efficiency and improved aerodynamic characteristics to get the thru5t to fly at high speed for the Regional turboprop aircraft. That is way Clark-Y airfoil which is used to conventional turboprop aircraft propeller is selected as a blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the propeller design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point of Regional turboprop aircraft. The propeller design results indicate that is evaluated to be properly constructed, through analysis of propeller aerodynamic characteristics using the Meshless method and MRF, SM method.

  • PDF

Analysis on Thermal Boundary Resistance at the Interfaces in Superlattices by Using the Molecular Dynamics (분자동역학법을 이용한 초격자 내부의 경계면 열저항의 해석)

  • Choi, Soon-Ho;lee, Jung-Hye;Choi, Hyun-Kue;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1382-1387
    • /
    • 2004
  • From the viewpoint of a macro state, there is no thermal boundary resistance (TBR) at an interface if both surfaces at an interface are perfectly contacted. However, recent molecular dynamics (MD) studies reported that there still exists the TDR at the interface in an ideal epitaxial superlttice. Our previous studies suggested the model to predict the TBR not only quantitatively also qualitatively in superlattices. The suggested model was based on the classical theory of a wave reflection, and provided highly satisfactory results for an engineering purpose. However, it was not the complete model because our previous model was derived by considering only the effects from a mass ratio and a potential ratio of two species. The interaction of two species presented by the Lennard-Jones (L-J) potential is governed by the mutual ratio of the masses, the potential well depths, and the diameters. In this study, we performed the preliminary simulations to investigate the effect resulting from the diameter ratio of two species for the completion of our model and confirmed that it was also a ruling factor to the TBR at an interface in superlattices.

  • PDF

Nano-structure and Magnetic Properties of FePd Superlattice Thin Film (FePd 인공격자박막의 나노구조 및 자기적 특성)

  • Kang, J.G.;Chung, I.S.;Koo, J.W.;Koh, J.H.;Koo, S.M.;Nam, S.M.;Ha, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.190-194
    • /
    • 2008
  • Epitaxial $L1_0$ FePd (001) thin films were successfully manufactured by sputtering deposition method. The structure and magnetic properties of FePd thin films were characterized as a function of Fe compositions. It was found that the long-range ordering parameter had a maximum for the stoichiometric composition, whereas the magnetic anisotropy had a maximum as the Fe content is decreased to slightly above the stoichiometric composition. This indicates that the stoichiometry is directly contributed to the chemical ordering and the magnetic anisotropy. These results imply that nonstoichiometric FePd compositions, with a slight excess of Pd, may in fact be preferred for applications that require high magnetic anisotropy.

Fabrication and Characterization of Ge/B-doped Optical Fiber for UV Poling Applications (UV 폴링용 Ge와 B가 첨가된 실리카 유리 광섬유 제조 및 특성 평가)

  • Kim, Bok-Hyeon;Ahn, Tae-Jun;Heo, Jong;Shin, Dong-Wook;Han, Won-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1158-1163
    • /
    • 2002
  • An Ge/B-doped optical fiber with high photosensitivity was fabricated to induce large second-order optical nonlinearity by UV poling. It was found that long period fiber gratings were inscribed on the fiber by the 248 nm KrF excimer laser irradiation with pulse energy of 116 mJ/$cm^2$ and pulse frequency of 10 Hz without hydrogen loading treatment. The photosensitivity was measured by use of the long period fiber grating pair method and the refractive index change of 3.3$10{\times}^{-3}$ was found to be induced in the core of the optical fiber by the KrF excimer laser irradiation of 8.67 kJ/$cm^2$. An H-shaped optical fiber was also fabricated for the UV poling through optimization of the fiber drawing condition.

Optimum Plastic Design Method of Grillages under Uniformly Distributed Lateral Loads and Axial Forces (균일 분포 횡하중 및 축하중을 받는 격자형 구조물의 최적 소성설계법)

  • Chung, T.J.;Kim, K.S.;Park, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.56-64
    • /
    • 1996
  • In this study, a review is made of the previous work(Ref. 1 and 5) for the development of the limit design method of the flat rectangular grillages under the lateral pressure. And the effect of the in-plane loads on the collapse theory is considered. The main part of the work is devoted in developing the standard design method of grillages under the criteria of minimum weight and minimum cost. In the final part, it was shown that Pareto solution methods can be easily applied to structural optimization with the multiple objectives, and the designer can have an appropriate choice from those Pareto optimal solutions.

  • PDF

DEVELOPMENT AND APPLICATION OF AUTOMATIC GRID GENERATION PROGRAM FOR 3-D WING USING JAVA APPLET (자바 애플릿을 이용한 3차원 날개 격자 자동 생성 프로그램의 개발과 적용)

  • Lee, J.H;Cho, H.S.;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.335-340
    • /
    • 2010
  • In this paper development of an automatic grid generation program for flow field calculation around 3D wing is described and its application is also introduced. The program is developed by using JAVA programming language and a graphic library, JOGL, and it can be usee either as an application program on a local computer or as a applet in the network environment. Currently, The program provides NACA series 4-digit airfoils as the wing cross-section shape and it offers a non-complicated GUI program which can easily generate structured grids for wings based on user's parameter input. Grid generated by the program can be selected as one of two types; O-type and C-type. In this research advancing layer method(ALM) augmented by elliptic smoothing method is used for the FLUENT. It is shown that by using current program high-quality structured grids around 3D wings can be easily generated, and typical grid generation results and flow solutions are demonstrated. Study on effects of geometric parameters on flow field is also tried by changing major wing parameters such as incidence angle type of wing-tip and sweepback angle.

  • PDF

A Study on precision encoder design using diffraction grating (광학식 엔코더의 회절격자를 이용한 고정도 엔코더 개발)

  • Hong J. P.;Son J. K.;Won T. H.;Kwon S. J.;Hong S. I.;Kim J. D.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.878-882
    • /
    • 2004
  • Position controls are very important in semiconductor manufacturing devices, machine tools precision measuring instruments, etc. In this paper, a novel encoder of digital and analog hybrid type is proposed. It is shown that from this experiment a high-resolution angle measurement device can be designed by a low cost incremental encoder.

  • PDF