• Title/Summary/Keyword: J-격자

Search Result 313, Processing Time 0.027 seconds

Development of a 2-dimensional Flow Solver using Hybrid Unstructured and Adaptive Cartesian Meshes (비정렬 및 적응 직교격자를 이용한 2차원 혼합격자계 유동해석 코드 개발)

  • Jung, M.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.294-301
    • /
    • 2011
  • A two-dimensional hybrid flaw solver has been developed for the accurate and efficient simulation of steady and unsteady flaw fields. The flow solver was cast to accommodate two different topologies of computational meshes. Triangular meshes are adopted in the near-body region such that complex geometric configurations can be easily modeled, while adaptive Cartesian meshes are, utilized in the off-body region to resolve the flaw more accurately with less numerical dissipation by adopting a spatially high-order accurate scheme and solution-adaptive mesh refinement technique. A chimera mesh technique has been employed to link the two flow regimes adopting each mesh topology. Validations were made for the unsteady inviscid vol1ex convection am the unsteady turbulent flaws over an NACA0012 airfoil, and the results were compared with experimental and other computational results.

  • PDF

The Semi-Implicit Numerical Scheme for Transient Two-Phase Flows on Unstructured Grids (과도 다차원 2상 유동 해석을 위한 비정렬 격자계에서의 Semi-Implicit 수치 해법 개발)

  • Cho, H.K.;Park, I.K.;Yoon, H.Y.;Kim, J.;Jeong, J.J.
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.218-226
    • /
    • 2008
  • A component-scale two-phase analysis code has been developed for a realistic simulation of two-phase flow transients in a light water nuclear reactor component. In the code, a two-fluid three-field model is adopted and the governing equations are solved on an unstructured mesh. For the numerical solution scheme, the semi-implicit method used in the RELAP5 code was selected, which has been proved to be very stable and accurate for most of practical applications. However, some modifications were needed for its application to an unstructured non-staggered grid. This paper presents the modified semi-implicit numerical method for unstructured grid and the preliminary results of the calculations.

DEVELOPMENT OF SPECIALIZED GRID GENERATION PROGRAM FOR MULTI-ELEMENT AIRFOIL AERODYNAMIC ANALYSIS (다중익형 공력 계산을 위한 특화 격자생성 프로그램 개발)

  • Nam, D.W.;Lee, Y.J.;Lee, J.Y.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.85-89
    • /
    • 2016
  • Wing is the most important part of aircraft which produces lift. In general when aircraft takes off or lands, high lift is required and additional devices are adopted in front and aft-side of wing, which constitute so-called multi element airfoils. The objective of this research is to develop a specialized grid generation program to help engineers in reducing human labor and eliminating time-consuming process for mesh regeneration by deforming the initially-given grid system with efficient deforming method. This paper describes briefly about the mesh deformation methods, and provides some results to verify the quality of deformed mesh and eventually correctness of current approach.

Simulation of Unsteady Rotor-Fuselage Aerodynamic Interaction Using Unstructured Adaptive Meshes (비정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사)

  • Nam, H.-J.;Park, Y.-M.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.11-21
    • /
    • 2005
  • A three-dimensional parallel Euler flow solver has been developed for the simulation of unsteady rotor-fuselage interaction aerodynamics on unstructured meshes. In order to handle the relative motion between the rotor and the fuselage, the flow field was divided into two zones, a moving zone rotating with the blades and a stationary zone containing the fuselage. A sliding mesh algorithm was developed for the convection of the flow variables across the cutting boundary between the two zones. A quasi-unsteady mesh adaptation technique was adopted to enhance the spatial accuracy of the solution and to better resolve the wake. A low Mach number pre-conditioning method was implemented to relieve the numerical difficulty associated with the low-speed forward flight. Validations were made by simulating the flows around the Georgia Tech configuration and the ROBIN fuselage. It was shown that the present method is efficient and robust for the prediction of complicated unsteady rotor-fuselage aerodynamic interaction phenomena.

A Study of Image Characteristics due to Focus-Grid and Head Phantom Decentering from the Armorphos Silicon Thin Film Transistor Detector the Fixed Focus-Grid is Applied (고정식 초점형 격자가 적용된 비정절 실리콘 평판형 검출기에서 초점-격자와 두부 팬텀의 중심 변위에 의한 화질 특성에 관한 연구)

  • Choi, Jun-Gu;Kim, Byeong-Gi;Cha, Seon-Hwa;Kim, Gyeong-Su
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • This study aim to investigate image characteristics due to focus-grid and head phantom decentering from the armorphos silicon thin film transistor detector the fixed focus-grid is applied, wish to propose right use method of digital medical equipment. Acquired image according to focus-grid and head phantom position decentering using head phantom on armorphos silicon thin film transistor detector the fixed focus-grid is applied. acquired image evaluate pixel value, histogram, plot profile, surface plot using NIB (Image J) image analysis program and compared decentering image with standard image. Mean value and standard deviation value of focus-grid lateral decentering and duplex decentering of focus-grid and head phantom decreased by ratio, consequently increase of horizontality, diagonal decentering. also, deteriorated contrast of image because frequency of high pixel value decreases fairly. according increases decentering, image distortion phenomenon was increase, by next time, pixel mean value of head phantom decentering was no big change but horizontality, diagonal, mean value and standard deviation value of pixel decreased by ratio. Even if increase pixel noise of image because wide latitude and post processing ability of digital detector, radiotechnologist can not recognize. Therefore, radiotechnologist must recognize correctly the photographing factors which increases pixel noise on the grid system installation digital detector and should exam.

  • PDF

NUMERICAL METHOD FOR THE TWO-FLUID THREE-FIELD MODEL ON AN UNSTRUCTURED MESH (비정렬격자 2-유체 3-상 유동 해석 기법)

  • Kim, J.;Park, I.K.;Cho, H.K.;Yoon, H.Y.;Jeong, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.243-248
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed. A two-fluid three-field model was adopted for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. The hydrodynamic solver is for the 3D component of a nuclear system code and the component-scale analysis tools for transient two-phase flows. The finite volume method and unstructured grid are adopted, which are useful for the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been adapted to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing problems well.

  • PDF

Design and Evaluation of Temperature Taxel for Tactile Sensation Using Fiber Bragg Grating (광섬유 브래그 격자를 이용한 촉감 감지용 단위 온도 센서 설계 및 평가)

  • Heo J.S.;Lee J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.21-22
    • /
    • 2006
  • Abstract should be written in English using Times New Roman 9pt. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here. Write English abstract here.

  • PDF