• Title/Summary/Keyword: Izod impact strength

Search Result 74, Processing Time 0.026 seconds

A Study on the Tensile Properties and Impact Behavior of Polyurethane/Nylon 6 Melt Blends (폴리우레탄/나일론 6 용융블렌드의 인장특성 및 충격거동에 관한 연구)

  • 지동선;김지혜;윤철수
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.483-491
    • /
    • 2002
  • Polyurethane (PU)/nylon 6 blends were prepared by melt blending with Haake Rheomix at $250^{\circ}C$. The compositions of PU/nylon 6 blends were 10/90, 20/80, 30/70, 40/60, and 50/50 (wt%). The effects of PU contents and blending time on the crystal structure, tan $\delta$, the tensile properties, and the impact behavior were investigated by means of WAXD and DMA, etc. The crystalline diffraction peaks are broadened, and their intensities are reduced with increasing PU contents and blending time. The glass transition temperature, the tensile strength, and the tensile modulus of the blends are also decreased and the elongation at break is increased. The influence of PU content on the crystal structure, tan 3, and the tensile properties of PU/nylon 6 blends is more significant than that of blending time. The impact strength of PU/nylon 6 (10/90 wt%) blends measured at 20 and $-35^{\circ}C$ could be greatly improved.

Fracture Behavior of Polycarbonate/Polyestercarbonate Blends (폴리카보네이트/폴리에스터카보네이트 블렌드의 파괴 거동)

  • Lee, Yong-Bum;Lee, Choon-Soo;Kim, Dae-Sik;Kim, Jong-Hyun;Jho, Jae-Young;Lee, Sang-Soo
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.537-542
    • /
    • 2011
  • Fracture behaviors of polycarbonate (PC)/polyestrercarbonate (PEC) blends and their miscibility have been examined to find out the mechanism of ductilie-brittle transition of fracture behavior which would be a main governing factor on the thickness sensitivity of impact strength of PC. $T_g$ measurement showed that PEC with a carbonate content higher than 30 mol% was miscible with PC. In the notched Izod impact test of PC, ductile-brittle transition occurred in the range of 4 to 5 mm thickness. The impact strength of miscible PC/PEC5 blends ductile-fractured in the thin specimens decreased with increasing PEC5 content, which was in accordance with the decrease of elongation at break in tensile test. In the brittle fracture of the thick specimens, the impact strength was well correlated with the plastic zone size in the vicinity of the notch tip.

Evaluation of mechanical properties and non-flammability of Nylon6 using melamine-based halogen-free flame retardant (Melamine계 난연제를 이용한 Nylon6의 난연성 및 물리적 특성 평가)

  • Kim Dong-Hak;Ryu Kwan-Suk;Son Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.743-748
    • /
    • 2006
  • We investigated the flame retardancy and the mechanical properties of Nylon6 by using melamine-based halogen-free flame retardants(melamine cyanurate:MC-100 and melamine phosphate:MP-100). We chose the UL-94 method for flame retardancy and measured the tensile strength, flexural strength, flexural modulus by using UTM and impact strength by using Izod impact tester. We also tested the effect of nano-clay on flammability and mechanical properties. We obtained the V0 grade when the concentration of flame retardant was over 5 wt%. The tensile strength and flexural strength decreased and flexural modulus increased with the concentration of both flame retardant systems. The results showed that MC-100 system was better than MPP-100 system. Because of poor dispersion, we did not obtain the synergistic effect of nano-clay.

  • PDF

Effect of Metallocene-catalyzed Polyethylene on the Rheological and Mechanical Properties of Poly(phenylene sulfide)/Polyethylene Blends

  • Lee, Bo-Sun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • Blends of poly(phenylene sulfide) (PPS) and polyethylene, either linear low density polyethylene (LLDPE) or metallocene-catalyzed polyethylene (MPE), that were prepared by melt blending, were investigated. From the rheological properties as determined by capillary rheometry, the melt viscosity of both PPS/LLDPE and PPS/MPE blends was low when PE was in dispersed phase, but high melt viscosity was observed for both blends with PPS in dispersed phase. Significant differences depending on the composition were found in the mechanical properties such as percent elongation at break and notched Izod impact strength. In addition, dispersed phase morphology of the blends was analyzed by a scanning electron microscope (SEM), together with brief discussion about the difference between them.

Thermal Conductivity and Mechanical Properties of Magnesium Oxide Reinforced Polyamide-66 Composites

  • Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Magnesium oxide (MgO) reinforced polyamide-66 (PA66) composites were prepared through melt-compounding method in order to determine the possibility of using MgO particle as conductive filler in the polymer-based composite. The effects of MgO filler content on the thermal conductivity and mechanical properties for the PA66/MgO composites were investigated. The results showed that the addition of MgO filler to the PA66 matrix led to a large increase in thermal conductivity of the PA66/MgO composites. Tensile strengths of the PA66/MgO composites were slightly decreased as MgO filler loading increased. However, flexural strength and flexural modulus were improved with increasing filler loading. Notched Izod impact strengths were dramatically lowered by the addition of MgO filler.

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

Mechanical Properties of in Recyclate HIPS with Concentration of Fly Ash (再生 HIPS에 石炭灰 첨가에 따른 기계적 특성)

  • 안태광;김덕현
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.34-40
    • /
    • 2001
  • Post-consumer dairy HIPS bottles were gathered and recycled by the following processes; crushing into flakes, chemical treatment for the purpose of elimination aluminium caps, washing, and separation from other plastics, such as PP, PE, plasticized PVC These HIPS flakes were extruded into the chips using a single screw extruder. Recyclate HIPS chips were mixed with fly ash as an additive in the range of 5-50 wt%, which were formed from coal power plant. Recyclate HIPS chips mixed with fly ash were molded to investigate thermal and mechanical properties. Their samples, thermal and mechanical properties were measured via DSC, TGA, UTM, and impact strength analysis. The probable mechanical properties exhibited the range of 5∼30% fly ash contents for their applications.

  • PDF

Phyllite as a New Flame Retardant Synergist for ABS Resin Containing Bromine Flame Retardant (브롬계 난연제를 사용한 ABS 수지에 대한 신규 난연 상승작용제로시의 천매암)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.172-181
    • /
    • 2006
  • Flame retardant synergism of phyllite was studied in ABS resins containing brominated flame retardant(tetrabromobisphenol A(TBBA) or brominated epoxy oligomer(BEO)) and antimony trioxide($Sb_2O_3)$. Talc was used for the comparison purpose. ABS compounds were manufactured by a twin-screw co-rotating extruder and subsequently injection molded into several specimen for mechanical and thermal properties. Flame retardancy of ABS compounds measured by UL 94 vertical test with 1.6 mm thick bar specimen was enhanced by the replacement of antimony trioxide into phyllite or talc in the range of 12.5%(0.5 wt%) to 37.5%(1.5 wt%). Phyllite showed better synergistic effect comparing with talc especially for BEO. Only phyllite enhanced the flowability of ABS compounds. Notched Izod impact strength decreased with the proportion of phyllite or talc content. Phyllite could replace the antimony trioxide up to the content of 25%(1 wt%) to give better flame retardancy and flowability without darkening problem.

Effect of Type of Rubber and Carbon Black Addition on ABS/PMMA Blends (ABS/PMMA 블렌드에 미치는 고무형태와 카본블랙 첨가에 따른 영향)

  • Choi, C.H.;Lee, S.M.;Yoon, L.K.;Shon, K.H.;Kim, B.K.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.935-942
    • /
    • 1994
  • Two types of ABS were prepared from diffrent types of rubber, and blends of the ABS and PMMA were compounded and evaluated in terms of morphology, mechaincal and rheological properties. In addition, the effect of carbon black in the ABS/PMMA blends were studied. With increasing PMMA content, flexural modulus, tensile yield strength, and surface gloss of the blends increased, but elongation at break and Izod Impact strength decreased. With carbon black addition, mechanical properties were generally decreased. Effects of the type of ABS, and carbon black on melt properties were also studied.

  • PDF

Impact Modification Effects of SEBS-g-MA on Polyamide 6/Maleated Polypropylene Blends (폴리아미드6/반응성 포리프로필렌 블렌드계에서 SEBS-g-MA의 충격개선효과)

  • Koh, Jae Song;Yoon, Tae Sung;Jung, In Kwon;Choi, Hyeong Ki;Jang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1141-1146
    • /
    • 1999
  • Melt blend of PA6/PP-g-MA system containing SEBS-g-MA as a compatible impact modifier was prepared to investigate the change of mechanical properties and morphologies. The tensile strength slightly decreased, but the elongation at break increased with increasing content of SEBS-g-MA in the blend. Also the notched izod impact strength increased with increasing the content of PP-g-MA and SEBS-g-MA. It is attributed to improved compatibilization and interfacial adhesion by reaction of the amide of PA6 with maleic anhydride of SEBS-g-MA and PP-g-MA. The result of dynamic mechanical analysis(DMA) showed a typical behavior of the compatibilization in the polymer blends. Finally, in the phase structure observed by the use of SEM, we confirmed improvement of the compatibilization and interfacial adhesion with increasing the content of SEBS-g-MA and PP-g-MA.

  • PDF