• 제목/요약/키워드: Iterative learning technique

검색결과 41건 처리시간 0.028초

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

Developing a pediatric nursing simulation scenario template in South Korea: applying real-time Delphi methods

  • Eun Joo Kim;Meen Hye Lee;Bitna Park
    • Child Health Nursing Research
    • /
    • 제30권2호
    • /
    • pp.142-153
    • /
    • 2024
  • Purpose: This study aimed to describe the process of developing a validated pediatric nursing simulation scenario template using the real-time Delphi method. Methods: A panel of 13 pediatric nursing experts participated in a real-time Delphi survey conducted over two rounds. Initially, 83 items were included in the questionnaire focusing on the structure and content of the simulation scenario template. Data analysis involved calculating the content validity ratio (CVR) and the coefficient of variation to assess item validity and stability. Results: Through iterative rounds of the Delphi survey, a consensus was reached among the experts, resulting in the development of a pediatric nursing simulation scenario template comprising 41 items across nine parts. The CVR values ranged from 0.85 to 1.0, indicating a high consensus among experts regarding the inclusion of all items in the template. Conclusion: This study presents a novel approach for developing a pediatric nursing simulation scenario template using real-time Delphi methods. The real-time Delphi method facilitated the development of a comprehensive and scientifically grounded pediatric nursing simulation scenario template. Our template aligns with the International Nursing Association for Clinical Simulation and Learning standards, and provides valuable guidance for educators in designing effective simulation scenarios, contributing to enhanced learning outcomes and better preparation for pediatric clinical practice. However, consideration of cultural and contextual adaptations is necessary, and further research should explore alternative consensus criteria.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

액티브 러닝을 활용한 영상기반 건설현장 물체 자동 인식 프레임워크 (Automated Vision-based Construction Object Detection Using Active Learning)

  • 김진우;지석호;서준오
    • 대한토목학회논문집
    • /
    • 제39권5호
    • /
    • pp.631-636
    • /
    • 2019
  • 최근 많은 연구자들이 대규모 현장에 투입된 건설자원의 유형과 위치를 자동 파악하는 영상분석기술을 활발히 개발하고 있다. 하지만 기존의 방법들은 인식하고자 하는 건설 물체(작업자, 중장비, 자재 등)를 학습용 이미지 데이터에 표시하는 Labeling 작업을 요구하고 이에 불필요한 시간과 노력이 낭비된다는 한계가 있다. 이러한 한계를 보완하기 위해서 본 연구는 액티브 러닝을 활용한 영상기반 건설현장 물체 자동 인식 프레임 워크를 제안함을 목표로 한다. 개발 프레임워크 검증을 목적으로 건설분야 Benchmark 데이터셋을 이용하여 실제 실험을 진행하였다. 그 결과, 액티브 러닝을 통해 학습한 모델은 다양한 특성을 지닌 건설물체를 성공적으로 인식할 수 있었고, 기존의 학습 DB 구축 방식과 비교할 때 더 적은 데이터 수와 반복학습 횟수로도 높은 성능을 가지는 영상분석모델을 개발할 수 있었다. 결과적으로 기존에 요구되던 학습 DB 구축을 위한 Labeling 작업을 줄일 뿐만 아니라 총 시간과 비용을 최소화할 수 있다.

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Diagnosis of Alzheimer's Disease using Wrapper Feature Selection Method

  • 비슈나비 라미네니;권구락
    • 스마트미디어저널
    • /
    • 제12권3호
    • /
    • pp.30-37
    • /
    • 2023
  • Alzheimer's disease (AD) symptoms are being treated by early diagnosis, where we can only slow the symptoms and research is still undergoing. In consideration, using T1-weighted images several classification models are proposed in Machine learning to identify AD. In this paper, we consider the improvised feature selection, to reduce the complexity by using wrapping techniques and Restricted Boltzmann Machine (RBM). This present work used the subcortical and cortical features of 278 subjects from the ADNI dataset to identify AD and sMRI. Multi-class classification is used for the experiment i.e., AD, EMCI, LMCI, HC. The proposed feature selection consists of Forward feature selection, Backward feature selection, and Combined PCA & RBM. Forward and backward feature selection methods use an iterative method starting being no features in the forward feature selection and backward feature selection with all features included in the technique. PCA is used to reduce the dimensions and RBM is used to select the best feature without interpreting the features. We have compared the three models with PCA to analysis. The following experiment shows that combined PCA &RBM, and backward feature selection give the best accuracy with respective classification model RF i.e., 88.65, 88.56% respectively.

동영상 데이터에서 조명 보정을 사용한 관심 영역의 획득 (Acquisition of Region of Interest through Illumination Correction in Dynamic Image Data)

  • 장석우
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.439-445
    • /
    • 2021
  • 영상 센서 및 소형 디스플레이의 발달로 가능해진 저가의 고속 카메라는 영상처리 및 패턴인식 분야에서 유용하게 활용될 수 있다. 본 논문에서는 약간의 시차를 두고 연속적으로 입력되는 고속의 영상으로부터 불규칙적인 조명을 보정한 다음, 조명이 보정된 영상으로부터 사람의 관심 영역인 노출된 피부 색상 영역을 획득하는 알고리즘을 소개한다. 본 연구에서는 먼저 받아들인 고속의 영상으로부터 비 균일하게 발생된 조명적인 효과를 프레임 블렌딩 기법을 사용하여 보정한다. 그런 다음, 사전에 반복적인 학습으로 생성된 타원형의 피부 색상 분포 모델을 적용하여 입력된 고속의 컬러 영상으로부터 관심 영역을 강인하게 획득한다. 실험 결과에서는 본 논문에서 제시된 접근 방법이 입력되는 컬러 영상으로부터 조명을 보정한 다음 관심 영역을 정확하게 획득한다는 것을 보여준다. 본 연구에서 제안된 알고리즘은 얼굴 인식 및 추적, 조명 보정 및 제거, 동영상 색인 및 검색 등과 같은 영상 인식과 연관된 다양한 종류의 실제적인 응용 프로그램에서 매우 유용하게 이용될 것으로 추측된다.

다중 대역 전송 시스템을 위한 전치왜곡 알고리즘 (Digital Predistortion for Multi-band/Multi-mode Transmission Systems)

  • 최성호;이병환;이철수;정의림
    • 한국정보통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.48-58
    • /
    • 2012
  • 본 논문에서는 다중 대역 전송 시스템에서 광대역 전력 증폭기의 선형화를 위한 새로운 전치왜곡 기법을 제안한다. 특히, 한 시스템에서 동시에 다중대역/다중모드 신호를 전송함에 있어 다중대역 신호가 하나의 전력 증폭기에 의해 증폭되어 전송되는 시스템을 고려한다. 상호 대역 간 비선형 왜곡을 포함한 비선형 특성을 보상하기 위하여, 본 논문에서는 다중 전치왜곡기 블록을 갖는 새로운 전치왜곡 구조를 제안하며, 다중 전치왜곡기의 계수를 동시에 갱신하는 적응 알고리즘을 제안한다. 제안하는 다중 대역 모델을 검증하기 위하여 상용 증폭기를 사용하여 증폭기 모델을 추출하였으며, 추출된 모델을 기반으로 제안한 알고리즘을 모의실험을 통해 검증하였다. 모의실험 결과는 제안 알고리즘이 효과적으로 다중 전치왜곡기의 계수를 구할 수 있으며, 다중 대역을 효과적으로 선형화 할 수 있음을 보여준다.