• Title/Summary/Keyword: Iterative codes

Search Result 147, Processing Time 0.025 seconds

A Study on layered Space Time Trellis codes for MIMO system based on Iterative Decoding Algorithm (MIMO 시스템에서 반복 복호 알고리즘 기반의 계층적 시공간 부호화 방식 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.845-849
    • /
    • 2012
  • The next-generation wireless communication requires fast transmission speeds with various services and high reliability. In order to satisfy these needs we study MIMO system used layered space time coded system (LST) combining space time trellis codes (STTC) with turbo codes. In LST, two codes that are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo Pi codes suggested in DVB-RCS NG system, and outer codes are STTC codes proposed by Blum. The interleaver technique is used to efficiently combine two codes. And we proposed and simulated that a full iteration method between turbo decoder and BCJR decoder to improve the performance instead of only processing inner-iteration turbo decoder. The simulation results of proposed effective layered method show improving BER performance about 1.3~1.5dB than conventional one.

Complexity of Distributed Source Coding using LDPCA Codes (LDPCA 부호를 이용한 실용적 분산 소스 부호화의 복호복잡도)

  • Jang, Min;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.329-336
    • /
    • 2010
  • Distributed source coding (DSC) system moves computational burden from encoder to decoder, so it takes higher decoding complexity. This paper explores the problem of reducing the decoding complexity of practical Slepian-Wolf coding using low-density parity check accumulate (LDPCA) codes. It is shown that the convergence of mean magnitude (CMM) stopping criteria for LDPC codes help reduce the 85% of decoding complexity under the 2% of compression rate loss, and marginal initial rate request reduces complexity below complexity minimum bound. Moreover, inter-rate stopping criterion, modified for rate-adaptable characteristic, is proposed for LDPCA codes, and it makes decoder perform less iterative decoding than normal stopping criterion does when channel characteristic is unknown.

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Analysis a LDPC code in the VDSL system (VDSL 시스템에서의 LDPC 코드 연구)

  • Joh, Kyung-Hyun;Kang, Hee-Hoon;Yi, Sang-Hoi;Na, Kuk-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.999-1000
    • /
    • 2006
  • The LDPC Code is focusing a powerful FEC(Forward Error Correction) codes for 4G Mobile Communication system. LDPC codes are used minimizing channel errors by modeling AWGN Channel as VDSL system. The performance of LDPC code is better than that of turbo code in long code word on iterative decoding algorithm. LDPC code are encoded by sparse parity check matrix. there are decoding algorithms for a LDPC code, Bit Flipping, Message passing, Sum-Product. Because LDPC Codes use low density parity bit, mathematical complexity is low and relating processing time becomes shorten.

  • PDF

Performance and Convergence Analysis of Tree-LDPC codes on the Min-Sum Iterative Decoding Algorithm (Min-Sum 반복 복호 알고리즘을 사용한 Tree-LDPC의 성능과 수렴 분석)

  • Noh Kwang-seok;Heo Jun;Chung Kyuhyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.20-25
    • /
    • 2006
  • In this paper, the performance of Tree-LDPC code is presented based on the min-sum algorithm with scaling and the asymptotic performance in the water fall region is shown by density evolution. We presents that the Tree-LDPC code show a significant performance gain by scaling with the optimal scaling factor which is obtained by density evolution methods. We also show that the performance of min-sum with scaling is as good as the performance of sum-product while the decoding complexity of min-sum algorithm is much lower than that of sum-product algorithm. The Tree-LDPC decoder is implemented on a FPGA chip with a small interleaver size.

Design of Low-Density Parity-Check Codes for Multiple-Input Multiple-Output Systems (Multiple-Input Multiple-output system을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Chae, Hyun-Do;Han, In-Duk;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.587-593
    • /
    • 2010
  • In this paper we design an irregular low-density parity-check (LDPC) code for multiple-input multiple-output (MIMO) system, using a simple extrinsic information transfer (EXIT) chart method. The MIMO systems considered are optimal maximum a posteriori probability (MAP) detector. The MIMO detector and the LDPC decoder exchange soft information and form a turbo iterative receiver. The EXIT charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the MIMO detector. It is shown that the performance of the designed LDPC code is better than that of conventional LDPC code which was optimized for either the Additive White Gaussian Noise (AWGN) channel or the MIMO channel.

Iterative Detection and Decoding of LDPC-Coded Multiuser Uplink Massive-MIMO Systems (LDPC 부호화된 멀티유저 상향링크 Massive-MIMO 시스템의 반복 검출 및 복호 수신기)

  • Park, Jin Soo;Kim, Inseon;Song, Hong-Yeop;Han, Sung Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.528-534
    • /
    • 2014
  • In this paper, we propose an iterative detection and decoding scheme for the LDPC coded multiuser uplink massive-MIMO systems. We consider the simple maximal ratio combining (MRC) detector and LDPC decoder. We formulate the soft output of MRC detector and the relation between the extrinsic informations of the detector and decoder. The performance improvement of the proposed iterative detection and decoding scheme is shown by computer simulation.

Self-Encoded Spread Spectrum with Iterative Detection under Pulsed-Noise Jamming

  • Duraisamy, Poomathi;Nguyen, Lim
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • Self-encoded spread spectrum (SESS) is a novel modulation technique that acquires its spreading code from a random information source, rather than using the traditional pseudo-random noise (PN) codes. In this paper, we present our study of the SESS system performance under pulsed-noise jamming and show that iterative detection can significantly improve the bit error rate (BER) performance. The jamming performance of the SESS with correlation detection is verified to be similar to that of the conventional direct sequence spread spectrum (DSSS) system. On the other hand, the time diversity detection of the SESS can completely mitigate the effect of jamming by exploiting the inherent temporal diversity of the SESS system. Furthermore, iterative detection with multiple iterations can not only eliminate the jamming completely but also achieve a gain of approximately 1 dB at $10^{-3}$ BER as compared with the binary phase shift keying (BPSK) system under additive white gaussian noise (AWGN) by effectively combining the correlation and time diversity detections.

An Iterative Soft-Decision Decoding Algorithm of Block Codes Using Reliability Values (신뢰도 값을 이용한 블록 부호의 반복적 연판정 복호 알고리즘)

  • Shim, Yong-Geol
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.75-80
    • /
    • 2004
  • An iterative soft-decision decoding algorithm of block codes is proposed. With careful examinations of the first hard-decision decoding result, the candidate codewords are efficiently searched for. An approach to reducing decoding complexity and lowering error probability is to select a small number of candidate codewords. With high probability, we include the codewords which are at the short distance from the received signal. The decoder then computes the distance to each of the candidate codewords and selects the codeword which is the closest. We can search for the candidate codewords which make the error patterns contain the bits with small reliability values. Also, we can reduce the cases that we select the same candidate codeword already searched for. Computer simulation results are presented for (23,12) Golay code. They show that decoding complexity is considerably reduced and the block error probability is lowered.

Efficient Partial Parallel Encoders for IRA Codes in DVB-S2 (DVB-S2 IRA Code를 위한 최적 부호화 방법)

  • Hwang, Sung-Oh;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.901-906
    • /
    • 2010
  • Low density parity check (LDPC) code, first introduced by Gallager and re-discovered by MacKay et al, has attracted researcher's interest mainly due to their performance and low decoding complexity. It was remarkable that the performance is very close to Shannon capacity limit under the assumption of having long codeword length and iterative decoder. However, comparing to turbo codes widely used in the current mobile communication, the encoding complexity of LDPC codes has been regarded as the drawback. This paper proposes a solution for DVB-S2 LDPC encoder to reduce the encoder latency. We use the fast IRA encoder that use the transformation of the parity check matrix into block-wise form and the partial parallel process to reduce the number of system clocks for the IRA code encoding. We compare the proposed encoder with the current DVB-S2 encoder to show that the performance of proposal is better than that of the current DVB-S2 encoder.