• 제목/요약/키워드: Iterative Voting

검색결과 6건 처리시간 0.016초

평면 추출셀과 반복적 랜덤하프변환을 이용한 다중 평면영역 분할 방법 (A Method to Detect Multiple Plane Areas by using the Iterative Randomized Hough Transform(IRHT) and the Plane Detection)

  • 임성조;김대광;강동중
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2086-2094
    • /
    • 2008
  • Finding a planar surface on 3D space is very important for efficient and safe operation of a mobile robot. In this paper, we propose a method using a plane detection cell (PDC) and iterative randomized Hough transform (IRHT) for finding the planar region from a 3D range image. First, the local planar region is detected by a PDC from the target area of the range image. Each plane is then segmented by analyzing the accumulated peaks from voting the local direction and position information of the local PDC in Hough space to reduce effect of noises and outliers and improve the efficiency of the HT. When segmenting each plane region, the IRHT repeatedly decreases the size of the planar region used for voting in the Hough parameter space in order to reduce the effect of noise and solve the local maxima problem in the parameter space. In general, range images have many planes of different normal directions. Hence, we first detected the largest plane region and then the remained region is again processed. Through this procedure, we can segment all planar regions of interest in the range image.

구조적 특징 정보를 이용한 복잡한 세포영상 분할 (Complex Cell Image Segmentation via Structural Feature Information)

  • 김성곤
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권10호
    • /
    • pp.35-41
    • /
    • 2012
  • 본 논문에서는 과분할 방지와 복잡한 현미경 세포영상의 자동 분할을 위한 새로운 마커 기반의 워터쉐드 알고리즘을 제안한다. 워터쉐드 방식은 접촉 또는 겹침으로 인한 복잡한 대상들을 분할하기 위해 효과적이며 보다 성공적인 적용을 위해 정확한 마커 추출이 선행되어야 한다. 세포 영상의 정확한 마커 추출을 위해 본 논문에서는 방사형 대칭성을 이용한 반복 보팅 알고리즘을 이용하였다. 합성 영상과 실제 영상에서도 기존의 다른 방식들에 비해 양호한 분할 결과를 보였다.

Estimation of Moving Information for Tracking of Moving Objects

  • Park, Jong-An;Kang, Sung-Kwan;Jeong, Sang-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.300-308
    • /
    • 2001
  • Tracking of moving objects within video streams is a complex and time-consuming process. Large number of moving objects increases the time for computation of tracking the moving objects. Because of large computations, there are real-time processing problems in tracking of moving objects. Also, the change of environment causes errors in estimation of tracking information. In this paper, we present a new method for tracking of moving objects using optical flow motion analysis. Optical flow represents an important family of visual information processing techniques in computer vision. Segmenting an optical flow field into coherent motion groups and estimating each underlying motion are very challenging tasks when the optical flow field is projected from a scene of several moving objects independently. The problem is further complicated if the optical flow data are noisy and partially incorrect. Optical flow estimation based on regulation method is an iterative method, which is very sensitive to the noisy data. So we used the Combinatorial Hough Transform (CHT) and Voting Accumulation for finding the optimal constraint lines. To decrease the operation time, we used logical operations. Optical flow vectors of moving objects are extracted, and the moving information of objects is computed from the extracted optical flow vectors. The simulation results on the noisy test images show that the proposed method finds better flow vectors and more correctly estimates the moving information of objects in the real time video streams.

  • PDF

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

자기 조직화 지도를 이용한 다중 평면영역 검출 (Multiple Plane Area Detection Using Self Organizing Map)

  • 김정현;등죽;강동중
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.22-30
    • /
    • 2011
  • Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.