• Title/Summary/Keyword: Iterated Fission Source

Search Result 2, Processing Time 0.018 seconds

Neutron clustering in Monte Carlo iterated-source calculations

  • Sutton, Thomas M.;Mittal, Anudha
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1211-1218
    • /
    • 2017
  • Monte Carlo neutron transport codes generally use the method of successive generations to converge the fission source distribution to-and then maintain it at-the fundamental mode. Recently, a phenomenon called "clustering" has been noted, which produces fission distributions that are very far from the fundamental mode. In this study, a mathematical model of clustering in Monte Carlo has been developed. The model draws on previous work for continuous-time birth-death processes, as well as methods from the field of population genetics.

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.