Item cold start is a well studied problem in the research field of recommender systems. Still, many existing collaborative filters cannot recommend items accurately when only a few user-item interaction data are available for newly introduced items (Cold items). We propose a interaction feature prediction method to mitigate item cold start problem. The proposed method predicts the interaction features that collaborative filters can calculate for the cold items. For prediction, in addition to content features of the cold-items used by state-of-the-art methods, our method exploits the interaction features of k-nearest content neighbors of the cold-items. An attention network is adopted to extract appropriate information from the interaction features of the neighbors by examining the contents feature similarity between the cold-item and its neighbors. Our evaluation on a real dataset CiteULike shows that the proposed method outperforms state-of-the-art methods 0.027 in Recall@20 metric and 0.023 in NDCG@20 metric.
The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.
Zheng, Xiaoyao;Luo, Yonglong;Xu, Zhiyun;Yu, Qingying;Lu, Lin
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3192-3212
/
2016
With the advent and popularity of e-commerce, an increasing number of consumers prefer to order tourism products online. A recommender system can help these users contend with information overload; however, such a system is affected by the cold start problem. Online tourism destination searching is a more difficult task than others on account of its more restrictive factors. In this paper, we therefore propose a tourism destination recommender system that employs opinion-mining technology to refine user preferences and item opinion reputations. These elements are then fused into a hybrid collaborative filtering method by combining user- and item-based collaborative filtering approaches. Meanwhile, we embed an artificial interactive module in our recommender system to alleviate the cold start problem. Compared with several well-known cold start recommendation approaches, our method provides improved recommendation accuracy and quality. A series of experimental evaluations using a publicly available dataset demonstrate that the proposed recommender system outperforms existing recommender systems in addressing the cold start problem.
When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.
The amount of data is increasing significantly as information and communication technology advances, mobile, cloud computing, the Internet of Things and social network services become commonplace. As the data grows exponentially, there is a growing demand for services that recommend the information that users want from large amounts of data. Collaborative filtering method is commonly used in information recommendation methods. One of the problems with collaborative filtering-based recommendation method is the cold start problem. In this paper, we propose a method to improve the cold start problem. That is, it solves the cold start problem by mapping the item evaluation data that does not exist to the initial user to the automatically generated data from the mobile app. We describe the main contents of the proposed method and explain the proposed method through the book recommendation scenario. We show the superiority of the proposed method through comparison with existing methods.
추천 시스템은 증가되고 있는 정보에서 사용자가 요구하는 적합한 정보를 선별해 제공해준다. 추천 시스템은 기존에 입력된 정보들을 알고리즘을 통해 선별하는 과정을 거치고 사용자의 정보나 내용 기반으로 정보를 제공한다. 추천 시스템의 문제점으로는 Cold-Start가 있으며, Cold-Start는 새로운 사용자의 정보가 충분하지 않아서 추천 시스템에서 새로운 사용자에게 정보를 추천할 때 발생한다. Cold-Start를 해결하기 위해선 사용자의 정보나 항목 정보가 충족해야 한다. 이에 본 논문에서는 협업 필터링 기법과 내용 기반의 필터링 기법을 혼합한 혼합 필터링 기법 기반으로 Cold-Start 문제를 해결하고 이를 사용하는 영화 추천 시스템을 제안한다.
Journal of Information Technology Applications and Management
/
제29권6호
/
pp.81-93
/
2022
As deep learning technology in natural language and visual processing has rapidly developed, collaborative filtering-based recommendation systems using deep learning technology are being actively introduced in the recommendation field. In this study, OCF-GAN, a hybrid collaborative filtering model using GAN, was proposed to solve the one-class and cold-start problems, and its usefulness was verified through performance evaluation. OCF-GAN based on conditional GAN consists of a generator that generates a pattern similar to the actual user preference pattern and a discriminator that tries to distinguish the actual preference pattern from the generated preference pattern. When the training is completed, user preference vectors are generated based on the actual distribution of preferred items. In addition, the cold-start problem was solved by using a hybrid collaborative filtering recommendation method that additionally utilizes user and item profiles. As a result of the performance evaluation, it was found that the performance of the OCF-GAN with additional information was superior in all indicators of the Top 5 and Top 20 recommendations compared to the existing GAN-based recommender. This phenomenon was more clearly revealed in experiments with cold-start users and items.
추천 시스템은 인터넷의 발달로 급격하게 증가하는 정보의 양으로 인해 생긴 정보 선택의 어려움을 소비자에게 덜어주고 각 개인의 취향에 맞는 정보를 효율적으로 보여주는 중요한 역할을 한다. 특히, E-commerce와 OTT 기업은 상품과 콘텐츠 양이 급격하게 증가하면서 추천 시스템의 도움 없이는 인기 있는 상품만 소비되는 현상을 극복하지 못한다. 이러한 현상을 극복하고 고객 개인 취향에 맞는 정보 혹은 콘텐츠를 제공해 고객의 소비를 유도하기 위해 추천 시스템의 연구가 활발히 진행되고 있다. 일반적으로 유저(user)의 과거 행동 이력을 활용한 협업 필터링이 유저가 선호한 콘텐츠의 정보를 활용하는 콘텐츠 기반 필터링에 비해 높은 성능을 보여준다. 하지만 협업 필터링은 과거 행동 데이터가 부족한 유저에 대해서는 추천의 성능이 낮아지는 콜드 스타트(Cold Start) 문제를 겪게 된다. 본 논문에서는 카카오 아레나 경진대회에서 주어진 음악 스트리밍 서비스 멜론의 플레이리스트 데이터를 기반으로 앞에서 언급한 콜드 스타트 문제를 해결할 수 있는 하이브리드 음악 추천 시스템을 제시했다. 본 연구에서는 플레이리스트에 수록된 곡 목록과 각 음악과 플레이리스트의 메타데이터를 활용해 절반 혹은 전부 가려진 플레이리스트의 다른 수록 곡을 예측하는 것을 목표로 하였다. 이를 위해 플레이리스트 안에 곡이 있는 경우와 아예 곡이 없는 경우를 나눠서 추천을 진행하였다. 플레이리스트 안에 곡이 있는 경우에는 해당 플레이리스트의 곡 목록과 각 곡의 메타데이터를 활용하기 위해 LightFM을 활용하였다. 그 다음에 Item2Vec을 활용해 플레이리스트에 있는 수록 곡과 태그 및 제목의 임베딩 벡터를 생성하고 이를 추천에 활용하였다. 최종적으로 LightFM과 Item2Vec 모델의 앙상블을 통해 최종 추천 결과를 생성하였다. 플레이리스트 안에 곡이 없고 태그 혹은 제목만이 존재할 경우에는 플레이리스트의 메타데이터인 태그와 제목을 FastText를 활용해 사전 학습을 시켜 생성된 플레이리스트 벡터를 기반으로 플레이리스트 간의 유사도를 활용하여 추천을 진행하였다. 이렇게 추천한 결과, 기존 Matrix Factorization(MF)에서 해결하지 못한 콜드 스타트 문제를 해결할 수 있었을 뿐만 아니라 곡과 플레이리스트의 메타데이터를 활용해 기존 MF 모델인 ALS와 BPR 그리고 Word2Vec 기반으로 추천해 주는 Item2Vec 기술보다 높은 추천 성능을 낼 수 있었다. 또한, LightFM을 토대로 다양한 곡의 메타데이터를 실험한 결과, 여러 메타데이터 중에서 아티스트 정보를 단독으로 활용한 LightFM 모델이 다른 메타데이터를 활용한 LightFM 모델들과 비교해 가장 높은 성능을 보여준다는 것을 확인할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권7호
/
pp.2399-2413
/
2021
A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.
추천 시스템은 일상의 정보를 필터링 해주는 웹 지능화 기술 중의 하나이다. 현재까지 협력기반 (사회기반) 추천 시스템, 내용기반 추천시스템과 이들의 장점을 혼합한 추천시스템들이 개발되어 왔다. 본 논문에서는 클러스터링 기법을 항목기반 협력필터링 틀에 적용한 일명 ICHM이라 불리는 새로운 형태의 혼합 추천 시스템을 소개한다. 이 방법은 항목의 내용 정보를 협력필터링 틀 안에 통합시킴으로써 평가 데이타의 희박성을 줄일 수 있을 뿐만 아니라 새로운 항목 추천 시 발생하는 문제점을 해결할 수 있다. ICHM 방법의 특성 및 성능을 평가하기 위하여 MovieLense 데이타를 이용한 다양한 실험을 하였다. 실험 결과, ICHM 방법이 항목기반 협력 필터링의 예측 질을 향상시킬 뿐만 아니라 새로운 항목 추천 시에도 아주 유용함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.