• 제목/요약/키워드: Isotropic pitch binder

검색결과 3건 처리시간 0.019초

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향 (Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block)

  • 김경훈;이상민;안동해;이영석
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.432-436
    • /
    • 2017
  • 석유 잔사유로부터 제조된 ${\beta}$-resin 함량이 각각 다른 바인더 피치와 등방코크스를 혼합 후 압축성형을 거쳐 탄소블럭을 제조하였다. 원소분석, FT-IR 및 열중량 분석을 통하여 바인더 피치의 물리적, 화학적 특성 및 열적 거동을 각각 고찰하였다. 또한, 주사전자현미경을 이용하여 측정된 탄소블럭의 파단면으로부터 등방코크스 입자와 바인더 피치의 결합성을 평가하였다. 실험 결과로부터 바인더 피치의 ${\beta}$-resin 함량이 높을수록 코크스와 바인더의 결합성이 향상됨을 알 수 있었다. 또한, 탄소블럭의 탄화 후 밀도는 ${\beta}$-resin 함량이 1.4%에서 20.1%로 증가함으로 인하여 $1.325g/cm^3$에서 $1.383g/cm^3$으로 증가하였다.

원자로용급 흑연인 IG-110의 파괴특성 (Fracture Properties of Nuclear Graphite Grade IG-110)

  • 한동윤;김응선;지세환;임연수
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.439-444
    • /
    • 2006
  • Artificial graphite generally manufactured by carbonization sintering of shape-body of kneaded mixture using granular cokes as filler and pitch as binder, going through pitch impregnation process if necessary and finally applying graphitization heat treatment. Graphite materials are used for core internal structural components of the High-Temperature Gas-cooled Reactors (HTGR) because of their excellent heat resistibility and resistance of crack progress. The HTGR has a core consisting of an array of stacked graphite fuel blocks are machined from IG-110, a high-strength, fine-grained isotropic graphite. In this study, crack stabilization and micro-structures were measured by bend strength and fracture toughness of isotropic graphite grade IG-110. It is important to the reactor designer as they may govern the life of the graphite components and hence the life of the reactor. It was resulted crack propagation, bend strength, compressive strength and micro-structures of IG-110 graphite by scanning electron microscope and universal test machine.