• Title/Summary/Keyword: Isotropic pitch

Search Result 40, Processing Time 0.021 seconds

Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber

  • Kim, Jung Dam;Roh, Jae-Seung;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.21
    • /
    • pp.51-60
    • /
    • 2017
  • Isotropic pitch-based fibers produced from coal tar pitch with the melt-blowing method were carbonized at temperatures ranging from 800 to $1600^{\circ}C$ to investigate their crystalline structure and physical properties as a function of the carbonization temperature. The in-plane crystallite size ($L_a$) of the carbonized pitch fiber from X-ray diffraction increased monotonously by increasing the carbonization temperature resulting in a gradual increase in the electrical conductivity from 169 to 3800 S/cm. However, the variation in the $d_{002}$ spacing and stacking height of the crystallite ($L_c$) showed that the structural order perpendicular to the graphene planes got worse in carbonization temperatures from 800 to $1200^{\circ}C$ probably due to randomization through the process of gas evolution; however, structural ordering eventually occurred at around $1400^{\circ}C$. For the carbonized pitch powder without stabilization, structural ordering perpendicular to the graphene planes occurred at around $800-900^{\circ}C$ indicating that oxygen was inserted during the stabilization process. Additionally, the shear stress that occurred during the melt-blowing process might interfere with the crystallization of the CPF.

Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Choi, Jong-Eun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.358-364
    • /
    • 2018
  • An isotropic pitch precursor for fabricating carbon fibres was prepared by co-carbonization of ethylene bottom oil(EBO) and polyvinyl chloride (PVC). Various pre-treatments of EBO and PVC, and a high heating rate of $3^{\circ}C/min$ with no holding time, were evaluated for their effects on the oxidative stabilization process and the mechanical stability of the resulting fibres. Our stabilization process enhanced the volatilization, oxidative reaction and decomposition properties of the precursor pitch, while the addition of PVC both decreased the onset time and accelerated the oxidative reaction. Aliphatic carbon groups played a critical role in stabilization. Microstructural characterization indicated that these were first oxidised to carbon-oxygen single bonds and then converted to carbon-oxygen double bonds. Due to the higher heating rate and lack of a holding step during processing,the resulting thermoplastic fibers did not completely convert to thermoset materials, allowing partially melted, adjacent fibres to fuse. Fiber surfaces were smooth and homogeneous. Of the various methods evaluated herein, carbon fibers derived from pressure-treated EBO and PVC exhibited the highest tensile strength. This work shows that enhancing the naphthenic component of a pitch precursor through the co-carbonization of pre-treated EBO with PVC improves the oxidative properties of the resulting carbon fibers.

Changes of Microstructure and Properties of Manufactured Modified Pitches via Pressure Changes during Heat Treatments in Coal Tar Pitch (석탄계 타르의 열처리 중 압력변화에 따른 변성 콜타르 핏치의 미세구조 및 물성 변화)

  • Ko, Hyo Joon;Chung, Sung Mo;Han, Ji Hoon;Park, Chang Uk;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.293-300
    • /
    • 2014
  • Coal-tar pitch, a feedstock which can be heat-treated to create graphite, is composed of very complex molecules. Coal-tar pitch is a precursor of many useful carbon materials (e.g., graphite, carbon fibers, electrodes and matrices of carbon/carbon composites). Modified coal-tar pitch (MCTP) was prepared using two different heat-treatment methods and their properties were characterized and compared. One was prepared using heat treatment in nitrogen gas; the other was prepared under a pressure of 350 mmHg in air. The MCTPs were investigated to determine several properties, including softening point, C/H ratio, coke yield, formation of anisotropic mesophase and viscosity. The MCTPs were subject to considerable changes in chemical composition due to condensation and polymerization in the used-as-received coal-tar pitch after heat-treatment under different conditions. The MCTPs showed considerable increases in softening point, C/H ratio, and coke yield, compared to those of as-received coal-tar pitch. The MCTP formed by heat-treatment in nitrogen showed isotropic phases below $350^{\circ}C$ for 1 h of soaking time. However, MCTP heat-treated under high pressure (350 mmHg) showed isotropic phases below $300^{\circ}C$, and showed anisotropic phases above $350^{\circ}C$, for 1 h of soaking time. The viscosity of the MCTPs increased with increase in their softening points.

Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution (PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성)

  • Kim, Ji-Hyun;Lee, Sangmin;Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.706-713
    • /
    • 2015
  • Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of $53.414{\pm}0.002W/mK$ and compressive strength of $1.348{\pm}0.864MPa$ at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.

Preparatoin of Precursor Pitch for Carbon Applications from Naphtha Cracking Residues (납사분해공정 잔사유로부터 탄소재료용 전구체 핏치의 제조)

  • Kim, Myung-Soe;Kim, Sang-Yeol;Hwang, Jong-Sic
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.77-87
    • /
    • 1997
  • PFO(pyrolized fuel oil) and $C_{10}^{+}$ oil, which are the residual heavy oils form a NCC(naphtha cracking center), were heat-treated to produce the precursor-pitch for carbon materials. After PFO was initially distilled near $300^{\circ}C$ to separate the volatile matters recovering as high-quality fuel oil, the residuum of nonvolatile precursor-pitch was then thermally pyrolized in the temperature ranges from $350^{\circ}C$ to $450^{\circ}C$. Spinnable isotropic pitch with the softening point of $200^{\circ}C$ and the toluene insolubles of 36wt% was obtained at $365^{\circ}C$, and then was successfully spun through a spinneret(0.5mm diameter). After spinning, an isotropic carbon fiber of $25{\mu}m$ diameter was obtained via oxidation and craboniation procedures. Mesophase spherules began to be observed from the product pitch pyrolized at $400^{\circ}C$, and bulk mesophase with a flow texture was observed above $420^{\circ}C$. In the case of $C_{10}^{+}$ was the feed was polymerized in the presence $H_2SO_4$ at room temperature to increase the molecular weight and then heat-treated gradually up to $200{\sim}250^{\circ}C$. The products obtained with the softening point of $80{\sim}190^{\circ}C$ were carbonized at 500 and $1000^{\circ}C$ to examine the morphology.

TEM Study of Micropores Developed on Pitch-based Carbon Fiber

  • Ryu, Seung-Kon;Lu, Ji Gui
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.114-118
    • /
    • 2006
  • Isotropic pitch-based carbon fiber has been activated by steam diluted in nitrogen in order to characterize the microporosity. Especially, 40 wt% burn-off ACFs were prepared from different conditions to compare the pore structure and size. The ACFs were thinly sliced to investigate the inside pores by TEM and image analyzer. As expected, the adsorption characteristics of these ACFs were quite different from one another because of different pore structure and size. Most pores are not slit-shaped but rather round. Small round micropores become broad and irregular as increasing the activation time and temperature.

  • PDF

Preparation and Application of ACFs Derived from the Petroleum Pitch and the Organometallic Compounds

  • Hong, Ik-Pyo;Ha, Baik-Hyon
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2002
  • Activated carbon fibers were prepared from the petroleum isotropic pitch and organometallic compounds. The metalsvwere dispersed uniformly in the ACFs. The specific surface area and pore size distributions of metal containing ACFsvwere measured. The mesopores of ACFs were developed by Co, Ni, and Mn metals addition and the catalytic reactivityvof ACFs'SOx removal was increased by adding Ni and Pd metals. It was found that the mesopores did not work forvthe improvement of catalytic reactivity of ACFs' SOx removal with the blank experiment using the metal removedvACFs.

  • PDF

Formation of Isotropic Carbon Matrix in Carbon/Carbon Composites Derived from Pitch

  • Ahn, Chong-Jin;Park, In-Seo;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.304-310
    • /
    • 2010
  • To manufacture a carbon/carbon composite the coal tar pitch was used as the matrix precursor and the PAN (polyacrylonitrile)-based carbon fiber was used as the reinforcing material to weave 3-directional preform. For pressure carbonization HIP equipment was used to produce a maximum temperature of $1000^{\circ}C$ and a maximum pressure of 100 MPa. The carbonization was induced by altering the dwell temperature between $250^{\circ}C$ and $420^{\circ}C$, which is an ideal temperature for the moderate growth of the mesophase nucleus that forms within the molten pitch during the pressure carbonization process. The application of high pressure during the carbonization process inhibits the mesophase growth and leads to the formation of spherical carbon particles that are approximately 30 nm in size. Most particles were spherical, but some particles were irregularly shaped. The spread of the carbon particles was larger on the surface of the carbon fiber than in the interior of the matrix pocket.

A Structural Study of the Activated Carbon Fibers as a Function of Activation Degrees

  • Roh, Jae-Seung;Suhr, Dong-Soo
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.51-54
    • /
    • 2004
  • Isotropic pitch-based carbon fiber was isothermally activated in $CO_2$ atmosphere. Structural parameters of the isotropic carbon fibers and activated carbon fibers (ACFs) were evaluated by X-ray diffraction (XRD). The $d_{002}$ and La of the carbon fibers were measured to be 4.04 ${\AA}$ and 23.6 ${\AA}$ and those of ACFs were 4.29 ${\AA}$ and 22.7 ${\AA}$, respectively, representing less ordered through activation process. The pores in the ACFs were characterized by BET, and they showed super-high specific surface area of maximum value 3,495 $m^2/g$ from average pore size of 8.3 ${\AA}$ at 59% burn-off. It was recognized that 8-9 ${\AA}$ was optimum range of pore size for efficient creation of high specific surface area. The average size of the pores formed at higher temperature ($1100^{\circ}C$) was larger than that of the pores formed at lower temperature ($900^{\circ}C$).

  • PDF

Fracture Properties of Nuclear Graphite Grade IG-110 (원자로용급 흑연인 IG-110의 파괴특성)

  • Han, Dong-Yun;Kim, Eung-Sun;Chi, Se-Hwan;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.439-444
    • /
    • 2006
  • Artificial graphite generally manufactured by carbonization sintering of shape-body of kneaded mixture using granular cokes as filler and pitch as binder, going through pitch impregnation process if necessary and finally applying graphitization heat treatment. Graphite materials are used for core internal structural components of the High-Temperature Gas-cooled Reactors (HTGR) because of their excellent heat resistibility and resistance of crack progress. The HTGR has a core consisting of an array of stacked graphite fuel blocks are machined from IG-110, a high-strength, fine-grained isotropic graphite. In this study, crack stabilization and micro-structures were measured by bend strength and fracture toughness of isotropic graphite grade IG-110. It is important to the reactor designer as they may govern the life of the graphite components and hence the life of the reactor. It was resulted crack propagation, bend strength, compressive strength and micro-structures of IG-110 graphite by scanning electron microscope and universal test machine.