• 제목/요약/키워드: Isotropic carbon

검색결과 112건 처리시간 0.022초

Tumbling Bed에서 화학증착법에 의해 증착되는 열분해탄소의 특성에 미치는 Silicon-Alloying의 효과 (The Effect of Silicon-Alloying on the Characteristics of the Pyrolytic Carbonds Deposited in Tumbling Bed by CVD)

  • 윤영진;이재영
    • 한국세라믹학회지
    • /
    • 제20권2호
    • /
    • pp.166-172
    • /
    • 1983
  • In this study the sillicon-alloyed isotropic pyrolytic carbon was deposited in the tumbling bed from the pyrolysis of propane and silicon tetrachloride and investigated whether the silicon-alloyed isotropic pyrolytic carbon deposited in this study was usable as bionaterial or not. The silicon-allyed isotropic pyrolytic carbon was varied by controlling the process variables such as propane con-concentration and the argon flow rate flowing in to the silicon tetrachloride bubbler at a fixed reaction bed tempera-ture of 120$0^{\circ}C$ a rotation of reaction tube of 40 rpm a bed particle weight of 7.5 g and a total flow rate of 21/min; the propane concentration was varied from 10 to 70 and the argon flow rate flowing into the silicon tetrachloride bubble from 0 to 1000 cc/min. The results show that the silicon-alloyed isotropic pyrolytic carbon was obtained at all conditions investigated, . And then the alloyed silicon content is rangion from 7 to 14.5 wt%. The density and deposition rate of deposited silicon-alloyed isotropic carbon increased axxording to silicon content and propane concentration. And the apparent crystal-size(Lc) of pyrolytic carbon is not changed with silicon content. The density and apparant crystallite size are respec-tively in the range of 1.94 to 2.06 and 20 to 25$\AA$ It is shown that the silicon-alloyed isotropic pyrolytic carbon ob-tained in this experiment is usable as biomaterial.

  • PDF

Preparation and characterization of isotropic pitch-based carbon fiber

  • Zhu, Jiadeng;Park, Sang Wook;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.94-98
    • /
    • 2013
  • Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and $2000^{\circ}C$ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and $2000^{\circ}C$, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached $3.9{\times}10^4$ S/m with the carbonization temperature increasing to $2000^{\circ}C$ using a four-point method.

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

A Structural Study of the Activated Carbon Fibers as a Function of Activation Degrees

  • Roh, Jae-Seung;Suhr, Dong-Soo
    • Carbon letters
    • /
    • 제5권2호
    • /
    • pp.51-54
    • /
    • 2004
  • Isotropic pitch-based carbon fiber was isothermally activated in $CO_2$ atmosphere. Structural parameters of the isotropic carbon fibers and activated carbon fibers (ACFs) were evaluated by X-ray diffraction (XRD). The $d_{002}$ and La of the carbon fibers were measured to be 4.04 ${\AA}$ and 23.6 ${\AA}$ and those of ACFs were 4.29 ${\AA}$ and 22.7 ${\AA}$, respectively, representing less ordered through activation process. The pores in the ACFs were characterized by BET, and they showed super-high specific surface area of maximum value 3,495 $m^2/g$ from average pore size of 8.3 ${\AA}$ at 59% burn-off. It was recognized that 8-9 ${\AA}$ was optimum range of pore size for efficient creation of high specific surface area. The average size of the pores formed at higher temperature ($1100^{\circ}C$) was larger than that of the pores formed at lower temperature ($900^{\circ}C$).

  • PDF

Preparation of isotropic spinnable pitch and carbon fiber from biomass tar through the co-carbonization with ethylene bottom oil

  • Yang, Jianxiao;Shi, Kui;Li, Xuanke;Yoon, Seong-Ho
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, we tried to prepare an isotropic spinnable pitch which can be useful to prepare the general purpose carbon fiber through the co-carbonization of biomass tar with ethylene bottom oil under two different preparation methods (atmospheric distillation, pressurized distillation). The results showed that the ethylene bottom oil added co-carbonization was very effective to decrease of the oxygen contents for obtaining a stable spinnable pitch. The pressurized distillation was more effective to reduce the oxygen functional groups of pitches than atmospheric distillation. The obtained spinnable pitch by the pressurized distillation showed higher pitch yield of 42% and lower oxygen content of 9.12% than the spinnable pitch by the atmospheric distillation. The carbon fiber derived from the pressurized distillation spinnable pitch by carbonization at $800^{\circ}C$ for 5 min showed that the higher tensile strength of carbon fiber was increased up to 800 MPa.

Structural Study of the Oxidized High Modulus Carbon Fiber using Laser Raman Spectroscopy

  • Roh, Jae-Seung;Kim, Suk-Hwan
    • Carbon letters
    • /
    • 제10권1호
    • /
    • pp.38-42
    • /
    • 2009
  • This study aims to find a correlation between XRD and Raman result of the oxidized high modulus carbon fibers as a function of its oxidation degrees, and compare with the isotropic carbon fiber reported early. La of the high modulus carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well. The La of the original high modulus carbon fibers were measured to be 144 ${\AA}$ from Raman analysis and 135 ${\AA}$ from XRD analysis. La of the 92% oxidized fiber were 168 ${\AA}$ by using Raman and 182 ${\AA}$ by using XRD. There was some correlation between the La value obtained from Raman and XRD. However the La value changes of the high modulus carbon fiber through whole oxidation process showed opposite tendency compare with the isotropic carbon fiber because of the fiber structure basically.

Oxidation Kinetics of Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Isotropic pitch based carbon fibers were exposed to isothermal oxidation in carbon dioxide gas to study the activation kinetics under the temperature of 800~$1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 0.92~1.25. It was shown that the activated carbon fiber shows the highly specific surface area (SSA) when the constant b comes close to 1. The activation kinetics were evaluated by the reaction-controlling regime (RCR) according to changes of the apparent activation energy with changes of the conversion. It was observed that the activation energies increase from 47.6 to 51.2 kcal/mole with the conversion increasing from 0.2 to 0.8. It was found that the pores of the activated carbon fiber under the chemical reaction were developed well through the fiber.

  • PDF

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon;Hyeongho Min;Jihun Son;Tae Kon Ahn;Changhyun Pang
    • 센서학회지
    • /
    • 제33권1호
    • /
    • pp.7-11
    • /
    • 2024
  • Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동 (Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces)

  • 홍남식;이상화
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

가로 등방성 복합재료의 파동전파에 관한 연구 (The Wave Propagation in transversely isotropic composite laminates)

  • 김형원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.422-425
    • /
    • 2005
  • 가로 등방성 복합재료에서 반사되거나 굴절된 파동의 속도와 입자방향, 그리고 진폭을 운동방정식과 구성방정식 그리고 파동수와 진동수로 표현된 변위식을 사용하여 구하였다. Snell 법칙을 사용하여 Eigenvalue 문제를 풀어 파동속도를 구하였으며 그 결과는 T300 Carbon fiber/5208 Epoxy 재료 성질을 이용하여 검증하였다. 이러한 분석은 수분 침수 C-scan을 이용하여 가로등방성 복합재료의 결점을 찾아내는데 응용될 수 있다.

  • PDF