• Title/Summary/Keyword: Isotopic fractionation

Search Result 35, Processing Time 0.021 seconds

A Study on Serpentinization of Serpentinites from the Ulsan Iron Mine (울산철광산 지역의 사문암의 사문석화 작용에 관한 연구)

  • Kim, Kyo Han;Park, Jae Kyong;Yang, Jong Mann;Satake, Hiroshi
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.267-278
    • /
    • 1993
  • Serpentinite rocks which are composed mainly of olivine, serpentine and clinopyroxene, cropped out in the anorogenic Kyongsang sedimentary basin of South Korea. The serpentinites contain high content of MgO (36.87~41.99%) and 47~67 ppm Co, 1185~2042 ppm Ni and 979~3582 ppm Cr, which are quite similar to those of ultrabasic rocks such as peridotite and dunite. Isotopic compositions of serpentinites range from -95.5 to -105.7‰ in ${\delta}D$ and +1.7 to 7.1‰ in ${\delta}^{18}O$ corresponding to the continental antigorite type. A wide variation of oxygen isotopic values and $H_2O^+$ content of serpentinites reflect the different water/rock ratios during serpentinization processes. Formation temperature of serpentine minerals are estimated to be unusually high temperature of $488{\sim}646^{\circ}C$ by serpentine-magnetite isotopic fractionation, which belong to continental antigorite type. Calculated ${\delta}^{18}O$ value of serpentinized fluid during serpentinization is suggested that the hydrothermal fluid responsible for serpentinization be originated from the magmatic fluid with a minor influx of paleo-meteoric water in this area.

  • PDF

Use of Magnesium Stable Isotope Signatures for the Petrogenetic Interpretation of Granitic Rocks (화강암류의 성인 해석에 대한 마그네슘 동위원소 자료의 활용)

  • Cheong, Chang-Sik;Ryu, Jong-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2014
  • With the advent of multi collector-inductively coupled plasma mass spectrometry, stable isotopic variations of non-traditional metal elements have provided important constraints on the sources of geologic materials. This review introduces the principles of magnesium isotopic fractionation and analytical methods. Recent case studies are also reviewed for the use of magnesium isotope signatures to decipher the source materials of I-, S-, and A-type granitoids in western North America, Australia, and China.

Sulfate reduction and sulfur isotopic fractionation in marine sediments (해양퇴적물내에서의 황산염 환원과 황의 안정동위원소 분화)

  • 한명우
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 1993
  • Concentrations of sulfate and 6-values of sulfate, $({\delta}^{34}SO_4_){pw}$, dissolved In pore waters were measured from the sediment cores of the two different marine environments : deep northeast Pacific (57-1) and coastal Kyunggi Bay of Yellow Sea (57-2) . Sulfate concentration in pore waters decreases with depth at both cores, reflecting sulfate reduction in the sediment columns. However, much higher gradient of pore water sulfate at 57-2 than 57-1 indicates more rapid sulfate reduction at 57-2, because of high sedimentation rate at the coastal area compared to the deep-sea. The measured 6-values, $({\delta}^{34}SO_4_){pw}$, follow extremely well the predicted trend of the Rayleigh fractionation equation. The range of 26.756 to 61.35% at the coastal core 57-2 is not so great as that of 32.4$\textperthousand$ to 97.8$\textperthousand$ at the deep-sea core 57-1. Despite greater graclient of pore water sulfate at 57-2, the 6-values become lower than those of the deep- sea core 57-1. This inverse relation between the 6-values and the gradients of pore water sulfate could be explained by the combination of the two subsequent factors : the kinetic effect by which the residual pore water sulfate becomes progressively enriched with respect to the heavy isotope of $^{34}S$ as sulfate reduction proceeds, and the intrinsic formulation effect of the Rayleigh fractionation equation in which the greater becomes the fractionation factor, the more diminished values of $({\delta}^{34}SO_4_){pw}$ are predicted.

  • PDF

Geochemistry and Petrogenesis of Pliocene Alkaline Volcanic Rocks of Dok Island, Korea

  • Wee, Soo Meen
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.447-459
    • /
    • 2015
  • Dok island comprises Pliocene volcanic products such as a series of volcanoclastic rocks and lavas ranging in composition from alkali basalts, and trachyandesites to trachytes. Compositional variation of the basaltic rocks can be attributed to fractional crystallization of olivine, clinopyroxene, plagioclase, and magnetite. Chemical variations among the trachyandesites are caused by fractionation of clinopyroxene, plagioclase, and magnetite with minor amphibole, while trachytes are controlled mainly by feldspar fractionation. Incompatible element abundance ratios and chondrite normalized LREE/HREE ratios (e.g., (La/Yb)c: 24.8 to 32.8 for basalts, 15.6 to 31.2 for trachyandesites) suggest that the origins of the basalts and trachyandesites involve both different degrees of partial melting and subsequent fractional crystallization processes. Trace element ratios of the basalts from Dok island are characterized by high Ba/Nb, La/Nb, Ba/Th and Th/U and isotopic ratios (Tasumoto and Nakamura, 1991) that are similar to the EM 1 type of oceanic island basalts such as Gough and Tristan da Cunha basalts.

A MECHANISM OF THE STRANGE ISOTOPIC FRACTIONATION OF OXYGEN FOUND IN METEORITE AND LABORATORY

  • Yang, J.;Kim, S.K.;Soh, K.S.;Yee, J.H.;Kim, S.W.;Kim, K.H.;Yoo, K.W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • The thermodynamic distribution of the vibrational states of ozone coupled with anharmonic predissociation produces an unusual isotopomeric pattern of oxygen molecules. The model presented here explains the experimental data obtained from the electric discharge of oxygen gas to produce ozone condensed on a quartz at 77K.

  • PDF

Chromatographic Enrichment of Lithium Isotopes by Hydrous Manganese(IV) Oxide

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.503-506
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. One molar CH3COO Na solution was used as an eluent. The heavier isotope of lithium was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was calculated according to the method of Glueckauf from the elution curve and isotopic assays. The single stage separation factor of lithium isotope pair fractionation was 1.021.

Variation Pattern of ${\delta}^{13}C_{DIC}$ of the Odaecheon Stream Water

  • Shin, Woo-Jin;Chung, Gong-Soo
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.02a
    • /
    • pp.115-125
    • /
    • 2005
  • Carbon isotopic composition of a stream (Odaecheon Stream) monitored over 7 months from July 2004 to January 2005 in Gangweon Province ranges from -9.24 to -4.69‰. Strong negative correlation between ${\delta}^{13}C_{DIC}$ and water temperature suggests that temperature is a dominant factor controlling ${\delta}^{13}C_{DIC}$ in the Odaecheon Stream. The variation pattern of ${\delta}^{13}C_{DIC}$ was thought to be caused by fractionation of C isotope between stream water and atmosphere and more fractionation at reduced temperature. More fractionation of C isotope between stream water and atmosphere at reduced temperature resulted in increase of ${\delta}^{13}C_{DIC}$ of stream water in winter compared to summer. Photosynthesis and respiration of aqueous biota seem to affect little in ${\delta}^{13}C_{DIC}$ as indicated by little variation of dissolved oxygen and reverse variation pattern of Eh in the stream and scarce aqueous biota in stream water. pH seems to be controlled by $CO_2{2}$ exchange between stream water and atmosphere. During summer more $CO_2{2}$ exchange between stream water and atmosphere resulted in decrease in pH value.

  • PDF

Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang

  • Zhenzhong Liu;Kaixuan Tan;Chunguang Li;Yongmei Li;Chong Zhang;Jing Song;Longcheng Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1476-1484
    • /
    • 2023
  • Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%-48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.

Applications of the Fast Grain Boundary Model to Cosmochemistry (빠른 입계 확산 수치 모델의 우주화학에의 적용)

  • Changkun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • Diffusion is a powerful tool to understand geological processes recorded in terrestrial rocks as well as extraterrestrial materials. Since the diffusive exchange of elements or isotopes may have occurred differently in the solar nebula (high temperature and rapid cooling) and on the parent bodies (fluid-assisted thermal metamorphism at relatively low temperature), it is particularly important to model elemental or isotopic diffusion profiles within the mineral grains to better understand the evolution of the early solar system. A numerical model with the finite difference method for the fast grain boundary diffusion was established for the exchange of elements or isotopes between constituent minerals in a closed system. The fast grain boundary diffusion numerical model was applied to 1) 26Mg variation in plagioclase of an amoeboid olivine aggregate (AOA) from a CH chondrite and 2) Fe-Mg interdiffusion between chondrules, AOA, and matrix minerals in a CO chondrite. Equilibrium isotopic fractionation and equilibrium partitioning were also included in the numerical model, based on the assumption that equilibrium can be reached at the interfaces of mineral crystals. The numerical model showed that diffusion profiles observed in chondrite samples likely resulted from the diffusive exchange of elements or isotopes between the constituent minerals. This study also showed that the closure temperature is determined not only by the mineral with the slowest diffusivity in the system, but also strongly depends on the constituent mineral abundances.

Hydrochemical and Isotopic Properties of the Thermal Spring Water from Chonju Jukrim District, Korea (전주 죽림지역 온천수의 화학적 및 동위원소적 특성)

  • Na, Choon-Ki;Lee, Mu-Seong;Lee, In-Sung;Park, Hee-Youl;Kim, Oak-Bae
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1997
  • The purpose of this study is to examine the feasibility of using stable isotopes as a hydrologic tracer, and to elucidate the groundwater circulation system and the source of S component dissolved in thermal water of the Chonju Jukrim thermal spring district based on the O, H and S isotopic variabilities of environmental materials including bedrock, rainwater, surface water, shallow subsurface water and thermal spring water. The ${\delta}^{18}O$ and ${\delta}D$ of subsurface waters and surface water show highly restricted range and plotted on the same meteoric water line as a ${\delta}D=8{\delta}^{18}O+19$ line, and derivate from the mean annual isotopic composition of the rain water but are analogous to those of rain waters precipitated during winter season, indicating that ground waters are originated from the meteoric water and are strongly affected by the seasonal variation of air mass. Thermal spring waters are more depleted in ${\delta}^{18}O$ and ${\delta}D$ than those of shallow ground water and surface water. It can be explained by the difference of recharge area. The hydrochemical properties of subsurface waters and surface water devide into two groups: $Ca(HCO_3)_2$ type including shallow subsurface water and surface water, and $Na(HCO_3)$ type of thermal spring waters. The ${\delta}^{34}S$ values of thermal spring water show very high positive and quitely distinct from those of shallow subsurface water and surface water that are similar to those of bed rocks, indicating that sulfate dissolved in thermal spring water has not only a terrigenic origin, but also originates partially from the foreign source containing very heavy ${\delta}^{34}S$ component such as an ancient sea water. However, the presence of $H_2S$ can not be ignore the affact of the isotopic fractionation to explaine the heavy ${\delta}^{34}S$ of thermal spring water. Overall, the Oxygen and Hydrogen stable isotopes can identify the source and the circulation system of the natural waters and the S-isotopes can provide a crucial clue on tracing the dissolved material transports in the circulation system of the natural water.

  • PDF