• Title/Summary/Keyword: Isotopic composition

Search Result 132, Processing Time 0.026 seconds

Stable Oxygen and Carbon Isotope Profiles of the Bivalve Shells collected from Coastal Regions of Korea: Comparison of the Coastal Water Properties

  • Khim, Boo-Keun
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.28-37
    • /
    • 1997
  • Two marine bivalve shells were collected from the eastern and western coastal regions of Korea, respectively. Stable oxygen and carbon isotope profiles are constructed using the incremental sampling along the axis of maximum growth to provide the continuous ${\delta}^{18}$O and ${\delta}^{13}$C records, which register the physical, biological and chemical properties of seawater where the organisms live. Cycles in the ${\delta}^{18}$O profiles are interpreted as annual along with the identification of annual growth bands; the maximum ${\delta}^{18}$O values correspond with the coldest temperature of seawater whereas the minimum ${\delta}^{18}$O values with the warmest temperature. The primary control on the amplitude of the ${\delta}^{18}$O profiles is seasonal variation of seawater temperature. The offset of the baseline between ${\delta}^{18}$O values of the two specimens is attributed to differences in both temperature and seawater ${\delta}^{18}$O values between two localities. The ${\delta}^{13}$C profiles show the similar seasonality of carbon cycling associated with phytoplankton productivity. The offset in the ${\delta}^{13}$C profiles between two specimens may be, as in the case of oxygen isotope profile, attributed to the different ${\delta}^{13}$C value of the seawater DIC (dissolved inorganic carbon) between the western coast and the eastern coast. Relationships between the shell isotopic composition and the coastal water properties of shell growth are readily interpreted from the ${\delta}^{18}$O-${\delta}^{13}$C pair diagram of the shell isotope data, similar to the use of salinity-${\delta}^{18}$O diagram for identifying water masses. The preliminary stable isotope results of this study suggest that mollusk shell isotope geochemistry may be useful to monitor the properties of water masses in the coastal and inner shelf setting around Korea and improve the interpretation of paleoceanography, provided the fossil mollusks are well preserved.

  • PDF

Shallow gas origin in the sediment near coastal area of Busan (부산 주변 해역 해저 퇴적물 내 공기층 가스 기원)

  • Kim, Ji-Hoon;Han, Hyun-Chul;Cheong, Tae-Jin;Lee, Young-Joo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • The main purpose of this study is to identify the shallow gas origin in the KSSM zone. Based on the results of gas composition and isotope in the headsapace gas, the shallow gas is mainly composed of methane and carbon and deuterium isotopes (${\delta}^{13}CCH_4$ and ${\delta}DCH_4$) of methane has ranged from -93.4%o to -70.9%, and from -228%o to -199%o in each. These results imply that shallow gas has predominately biogenic source by $CO_2$ reduction rather than thermogenic. The carbon isotopic separation (${\varepsilon}_c$) between methane and carbon dioxide $(CO_2)$ has a range of 54.4 to 72.2, it also supports biogenic origin of shallow gas.

  • PDF

Petrogeochemistry of Granitic Rocks Distributed in the Geumsan District, Korea (금산지역에 분포하는 화강암류의 암석지구화학)

  • Chin, Ho-Ill;Min, Kyoung-Won;Chon, Hyo-Taek;Park, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.123-137
    • /
    • 1995
  • The Mesozoic Geumsan granitic rocks of various composition are distributed in the Geumsan district, the central part of the Ogcheon Fold Belt. About 40 ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in this district and are believed to be genetically related to the granitic rocks. Based on their petrography and geochemistry, the granitic rocks in this district can be classified into two groups ; the Group I( equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Group II(seriate pinkfeldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Interpreted from their isotopic dating data and geochemical characteristics, the Group I and the Group II are inferred to be emplaced during the Jurassic(~184Ma), and the Cretaceous to the early Tertiary period(~59Ma), respectively. Both Group I and Group II generally belong to magnetite-series granitoids. The Cretaceous granitic rocks of Group II are more highly evolved than those of the Jurassic Group I. The Rb-Sr variation diagram suggests that the granitic rocks of the Jurassic Group I and of the Cretaceous Group II be evolved mainly during the processes of fractional crystallization and partial melting, respectively.

  • PDF

A Study on the Recharge Characteristics of Groundwater in Subcatchment including Spring Water Wells (샘물 취수정이 위치한 소유역의 지하수함양 특성에 관한 연구)

  • Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • Bottled water companies submit monthly hydrologic data including periodical environmental effects investigation, daily water production capacity, water production, water level, water chemistry (pH, EC, temperature) per hour and strictly manage groundwater by periodical analyses. Thus few problems concerning drawdown due to excess intake of groundwater take place. Nevertheless, bottled water companies are imprinted as a contribution to civil affairs resulted regarding groundwater near the companies. Therefore, a new method is required during water balance analysis in environmental effects evaluation, which should be compatible with the evaluation by hydrologic experts as well more accessible to non-experts. In this study, water level of surface water and recharge rate in subcatchment where water production wells are located were measured and monthly baseflow rates were separated from normal streams. Besides, recharge properties of groundwater and surface water in the same catchment area were estimated using analyses of oxygen and hydrogen isotopes in groundwater (production well), surface water, and rainfall.

Stable carbon isotope signatures of zooplankton in some reservoirs in Korea

  • Lee, Jeayong;Lee, Yunkyoung;Jang, Changwon;Owen, Jeffrey S.;Kim, Jai-Ku;Eum, Jaesung;Jung, Sungmin;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • v.36 no.3
    • /
    • pp.183-191
    • /
    • 2013
  • Dissolved organic carbon (DOC) concentrations and zooplankton and particulate organic matter (POM) ${\delta}^{13}C$ values were measured in five reservoirs in Korea. Zooplankton ${\delta}^{13}C$ and POM ${\delta}^{13}C$ showed large range from -33‰ to -22‰ and a significant difference among the reservoirs. One eutrophic reservoir, Lake Masan, showed unique characteristics with the highest zooplankton density, the highest ${\delta}^{13}C$, and the highest DOC. Zooplankton ${\delta}^{13}C$ was similar to POM ${\delta}^{13}C$, implying that zooplankton occupies substantial portion of POM or that zooplankton isotopic composition is related to selective grazing and assimilation of food sources from bulk POM. Except Lake Masan zooplankton ${\delta}^{13}C$ values were negatively correlated to DOC concentration in four reservoirs with mostly forest land use. This pattern can be probably attributed to intensive agricultural land use in the watershed of Lake Masan compared to the mostly forest land use in the other watersheds. Understanding the relationship between zooplankton ${\delta}^{13}C$ values and the origin of organic matter associated with watershed characteristics will be valuable to better understand trophic relationships in reservoirs in the summer monsoon region.

Sulfur and Carbon Isotope Studies of Principal Metallic Deposits in the Metallogenic Province of the Taebaeg Mt. Region, Korea (태백산지구(太白山地區)의 금속광상(金屬鑛床)에 대(對)한 유황(硫黃) 및 탄소안정동위체(炭素安定同位體)에 관(關)한 연구(硏究))

  • Lee, Min Sung
    • Economic and Environmental Geology
    • /
    • v.18 no.3
    • /
    • pp.247-251
    • /
    • 1985
  • The sulfide and carbonate mineral samples for sulfur and carbon isotope studies were collected from Sangdong, Geodo, Yeonhwa, Shinyemi and Janggun mines which are distributed in the Metallogenetic Province of the Taebaeg Mt. Region. The ${\delta}S^{34}$ values of molybdenite, pyrite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite and galena from the above mines are similar and within the range of +1.66 to +6.77‰ with the exception of chalcopyrite from Geodo mine ranging from -1.58 to 1.96‰, while the sulfide minerals are dominated by positive values between +3.05 and +5.08‰. It is suggested that the major sulfur source is genetically related to the Cretaceous granitic activity. The average ${\delta}C^{13}$ values of calcite from limestone, calcite from calcite vein in ore bodies and granite, and rhodochrosite from ore bodies are -0.60‰, -2.69‰ and -6.00‰, respectively. The data on carbon isotope compositions indicate that the calcite from limestone originated in marine environment, the rhodochrosite in hydrothermal solution, and calcite from calcite vein and granite in the mixing condition of marine and hydrothermal waters. The temperatures of mineralization by the sulfur isotopic composition coexisting pyrite-pyrrhotite from Yeonhwa No.1, sphalerite-galena from Weolam and Dong-jeom of Yeonhwa No.1 mine, sphalerite-galena and pyrite-galena from Janggun mine were $273^{\circ}C$, $460{\sim}511^{\circ}C$, $561{\sim}690^{\circ}C$, $341^{\circ}C$ and $375^{\circ}C$, respectively.

  • PDF

Characteristics of a Turbidite Sediment from the Southern Margin of the Okinawa Trough, Japan (오끼나와해곡 남쪽해역의 저탁류 퇴적물의 특성)

  • 현상민
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 1995
  • A turbidite core sediment (RN88-PC5) from 2051 m on the deep-sea floor at the southern margin of Okinawa Trough was examined. Sedimentological characteristics were quite different between sandy sediments and hemipelagic sediments and hemipelagic sediments in terms of benthic foraminiferal assemblage, grain-size and chemical composition. All turbidite sandy sediments were clearly transported from shallow area as they include typical coral reef dwelling benthic foraminifera which were not found in the background hemipelagic sediments. These layers also suggest that the sediments were transported by turbidity-related currents and implies that sedimentological mechanisms were different between sandy sediments and hemipelagic sediments. The result of the /SUP 14/ C age dating and the stable oxygen isotopic fluctuation of planktonic foraminifera show a gradual warming trend of the surface water from about 10 Ka to present. Also Termination lb as well as two fresh water input events were recognized at ca2 and 7 ka.

  • PDF

Interrelationship between Paleovegetation in Southern and Central California and Northeast Pacific Atmospheric and Oceanographic Processes over the Last ~30 kyr (과거 3만년 동안 캘리포니아 남부와 중부지역의 고식생 변화와 북동태평양 대기 및 해양순환 변동과의 연관성 연구)

  • Suh, Yeon Jee
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • Understanding the interaction between climate and the water cycle is critical especially in a drought sensitive region such as California. This study explored hydrologic changes in central and southern California in relation to the glacial-interglacial climate cycles over the last 30 thousand years. To do this, we reconstructed paleovegetation using plant wax carbon isotopic compositions (${\delta}^{13}C$) preserved in marine sediment cores retrieved from the central California continental shelf (ODP Site 1018) and Santa Barbara Basin (ODP Site 893A). The results were then compared to the existing sea surface temperature (SST) and pollen records from the same cores to understand terrestrial hydrology in relation to oceanographic processes. The Last Glacial was generally dry both in central and southern California, indicated by grassland expansion, confirming the previously suggested notion that the westerly storm track that supplies the majority of the precipitation in California may not have moved southward during the glacial period. Southern California was drier than central California during the Last Glacial Maximum (LGM). This drying trend may have been associated with the weakening of the California Current and northerly winds leading to the early increase in SST in southern California and decline in both offshore and coastal upwelling. The climate was wetter during the Holocene in both regions compared to the glacial period and forest coverage increased accordingly. We attribute this wetter condition to the precipitation contribution increase from the tropics. Overall, we found a clear synchronicity between the terrestrial and marine environment which showed that the terrestrial vegetation composition in California is greatly affected by not only the global climate states but also regional oceanographic and atmospheric conditions that regulate the timing and amount of precipitation over California.

Improving Strontium Isotope Ratio Analysis Using MC-ICP-MS (다검출기 유도결합 플라즈마 질량분석기를 이용한 스트론튬 동위원소비 분석법 개선)

  • Lee, Sin-Woo;Park, Jaeseon;Park, Hyun-Woo;Hwang, Jong Yeon;Kim, Kumhee;Chung, Hyun-Mi;Choi, Jong-Woo
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.237-242
    • /
    • 2018
  • Strontium (Sr) commonly exists in rock, groundwater, soil, plants, and animals. The Sr isotope ratio offers important information as a tracer on nature because the Sr isotopic composition is not fractionated by any biological process in these ecosystems. Hence, Sr isotope ratio has been used in several studies on tracing the Sr source for contaminated sites and human migration. In this study, we developed a separation method for Sr content, and then improved Sr isotope analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A powdered rock standard (NIST 2710a) was used to determine the removal of interference elements (Rb and Ca) and the recovery rate of Sr content. The results ranged from 98% to 106%. Additionally, three standard samples (NBS 987, IAPSO and NIST 1486) were analyzed to evaluate the precision and accuracy of the results. The measured $^{87}Sr/^{86}Sr$ ratio for all the samples were consistent with the reported values, within an error. These results indicate that our established Sr separation and Sr isotope measurement methods are reliable and can hence be useful in the fields of environmental and forensic sciences.

Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk-Kangwon Province, Korea (경북-강원일대 탄산약수의 수질화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Yoo, Sang-Woo;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 2011
  • Hydrochemical and carbon isotopic (${\delta}^{13}C_{DIC}$) analyses of 11 water samples, and noble gas isotopic analyses of 8 water samples collected in the Kyeoungbuk and Kangwon areas of Korea were performed to determine their hydrochemical characteristics and to interpret the source of noble gases and $CO_2$ gas in the water. The carbonated mineral waters are weakly acidic (PH = 5.59-6.04), and electrical conductivity ranges from 302 to $864\;{\mu}S/cm$. The chemical composition of all the water samples is Ca-$HCO_3$ type. The high contents of Fe and Mn exceed the safe limits for drinking water. The ${\delta}^{13}C_{DIC}$ values of the samples range from -5.30‰ to -2.84‰, indicating that the carbon is supplied mainly from a deep-seated source and to a lesser degree from an inorganic carbonate source. The $^3He/^4He$ ratios of the samples range from $1.51{\times}10^{-6}$ to $6.45{\times}10^{-6}$. The samples plot into three groups on a $^3He/^4He$ versus $^4He/^{20}Ne$ diagram: the deep-seated field (e.g., a mantle source), the atmospheric field, and the air-mantle mixing field. A wide range of $^4He/^{20}Ne$ ratios is observed ($0.036{\times}10^{-6}$ to $1.76{\times}10^{-6}$), indicating that while radiogenic $^4He$ is dominant in these water samples, mantle-origin He is also present. The supply of $CO_2$ gas and noble gases from a deep-seated source to carbonated waters is inferred to be controlled by geological structures such as faults and geological boundaries.