• Title/Summary/Keyword: Isotope dilution technique

Search Result 13, Processing Time 0.029 seconds

Isotope-Dilution Mass Spectrometry for Quantification of Urinary Active Androgens Separated by Gas Chromatography

  • Lee, Su-Hyeon;Choi, Man-Ho;Lee, Won-Yong;Chung, Bong-Chul
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.29-32
    • /
    • 2010
  • Cross reacting antibodies can cause an overestimation of the results of immunoassays. Therefore, alternative methods are needed for the accurate quantification of steroids. Gas chromatography combined with isotope-dilution mass spectrometry (GC-IDMS) is developed to quantify urinary active androgens, testosterone, epitestosterone and dihydrotestosterone, which are clinically relevant androgens to both hair-loss and prostate diseases. The method devised involves enzymatic hydrolysis with $\beta$-glucuronidase, solid-phase extraction, liquid-liquid extraction using methyl tert-butyl ether and subsequent conversion to pentafluorophenyldimethylsilyl-trimethylsilyl (flophemesyl-TMS) derivatives for sensitive and selective analysis in selected-ion monitoring mode. Flophemesyl-TMS derivatization not only eliminates matrix interference but also has a good peak resolution within a 6 min-run. A selective and sensitive GC technique with flophemesyl-TMS derivatives also allows accurate quantitative analysis of three active androgens when combined with IDMS. The limit of quantification of the three analytes was <50 pg/mL, and extraction recoveries ranged from 91.9 to 102.1%. The precision and accuracy were 1.2~6.5% and 89.0~106.7%, respectively. This GC-IDMS method can be useful for evaluating the drug efficacy and monitoring the biological processes responsible for male-pattern baldness and prostate diseases.

Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석)

  • Suh, Jungkee;Woo, Jinchoon;Min, Hyungsik;Yim, Myeongcheul
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.

Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry (동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용)

  • ;;;增田彰正
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.190-201
    • /
    • 2001
  • Isotope Dilution Mass Spectrometry(IDMS) is one of the analytical method which uses enriched isotope spikes and analyzes the abundance of element by comparison of the spectrum between spiked mass and non-spike mass. Especially, the Thermal Ion Mass Spectrometry with isotope dilution technique (in general ID-TIMS) is the most accurate method of the chemical analysis, which enables us to obtain the data better than 1% in accuracy and precision. In IDMS, enriched isotope spike is one of the most important factor in order to obtain the best data. For rare earth elements, in general, a mixture of /sup 138/La, /sup 142/Ce, /sup 145/Nd, /sup 149/Sm, /sup 151/Sm, /sup 151/Eu, /sup 157/Gd, /sup 163/Dy, /sup 167/Er, /sup 171/Yb, and /sup 176/Lu is used as composite spike. IDMS is very useful in geochronology and REE geochemistry. Especially, it is very effective in studying the “tetrad effect” of rare earth elements in natural samples.

  • PDF

A Technique to Minimize Impurity Signal from Blank Rhenium Filaments for Highly Accurate TIMS Measurements of Uranium in Ultra-Trace Levels

  • Park, Jong-Ho;Choi, In-Hee;Song, Kyu-Seok
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.17-20
    • /
    • 2010
  • As background significantly affects measurement accuracy and a detection limit in determination of the trace amounts of uranium, it is necessary to minimize the impurities in the filaments used for thermal ionization mass spectrometry (TIMS). We have varied the degassing condition such as the heating currents and duration times to reduce the backgrounds from the filaments prepared with zone-refined rhenium tape. The most efficient degassing condition of the heating current and the duration time was determined as 3.5 A and 60 min, respectively. The TIMS measurement combined with the isotope dilution mass spectrometry (IDMS) technique showed that the uranium backgrounds were determined to be in a few fg level from blank rhenium filaments. The background minimized filaments were utilized to measure the uranium isotope ratios of a U030 (NIST) standard sample. The excellent agreement of the measurement with the certified isotope ratios showed that the degassing procedure optimized in this study efficiently reduced the impurity signals of uranium from blank rhenium filaments to a negligible level.

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

Effect of Barley, Italian ryegrass and Legume Mixture on Nitrogen Fixation and Transfer to Grasses on Spring Paddy Field using Isotope Dilution and Difference Method (답리작 춘계포장에서 보리 및 이탈리안 라이그라스와 두과의 혼파비율이 동위원소 희석법 및 차이법을 이용한 질소고정 및 이동에 미치는 영향)

  • Lee, Hyo-Won;Lee, Hyo-Jin;Kim, Won Ho;Yoon, Bong Ki;Ko, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.318-324
    • /
    • 2016
  • In order to study the effect of barley, Italian ryegrass (IRG), and legume mixture on nitrogen fixation and transfer to grasses on spring paddy field, an experiment was carried out from Oct. 2006 to June 2007 in Naju, Korea. A split plot design with three replications was used for the experiment. One reference plot was assigned for each treatment to determine nitrogen fixation. Main plots consisted of Chinese milk vetch, crimson clover, forage pea, and hairy vetch with barley, respectively. Subplot treatment were barley or IRG with four seeding ratio of legumes (50:50, 60:40, 70:30, and 80:20). To estimate N fixation by legumes, $^{15}N$ isotope dilution technique was used. $^{15}N$ fertilizer [$(^{15}NH_4)_2SO_4$ solution at 99.8 atom N] was uniformly applied to $600cm^2$ in the middle of each plot on April 15, 2007. Plots were harvest by hand on June 8, 2007. Dried sample were ground to a fine power and analyzed for total N isotope N. $^{15}N$ was determined using elemental analyzer-isotope ratio mass spectrometry. The calculation of N transfer was determined with the isotope dilution method. The content of N was higher in legumes than that in barley or Italian ryegrass. Nitrogen level in forage pea was significantly higher than that of other legumes. There were significantly differences in N content between legumes in IRG mixture. Atom % $^{15}N$ excess was significantly different in legumes with barley. The 60:40 sub plot had higher (p<0.05) atom % $^{15}N$ than other seeding ratio treatments. The enrichment ranged from 0 to 0.58. Compared to barley, the enrichment of IRG with its accompanied legumes was higher, ranging from 0.38 to 1.0. The N derived from the atmosphere (Ndfa) ranged from 0% to 49.5% with barley-legume mixture. It ranged from 0 to 60.5% in IRG-legume plots. N transfer from legumes to neighboring grasses was 12.3 to 90.9 kg/ha for barley-legume mixture and 31.7 to 107.8 kg/ha for IRG plots. IRG plots showed higher N transfer for IRG-legume mixture in general based on difference method. Based on $^{15}N$ dilution method, the N transfer was 0 to 36.1 kg/ha for barley-legume mixture and 0 to 50.6 kg/ha for IRG plots. There was a tendency toward higher N transfer on the difference method than that of the $^{15}N$ dilution method.

Comparative GC-MS Based In vitro Assays of 5α-Reductase Activity Using Rat Liver S9 Fraction

  • Lee, Su-Hyeon;Lee, Dong-Hyoung;Lee, Jeong-Ae;Lee, Won-Yong;Chung, Bong-Chul;Choi, Man-Ho
    • Mass Spectrometry Letters
    • /
    • v.3 no.1
    • /
    • pp.21-24
    • /
    • 2012
  • $5{\alpha}$-Dihydrotestosterone (DHT) is the primary active metabolite of testosterone, catalyzed by $5{\alpha}$-reductase ($5{\alpha}R$) in the skin, prostate, and liver. In this study, the $5{\alpha}R$ activity in rat liver S9 fraction in the presence of a NADPH-generating system was evaluated and compared by gas chromatography-mass spectrometry (GC-MS)-based in vitro assays. Testosterone and a $5{\alpha}R$ inhibitor, finasteride, were added to the S9 fractions and incubated at $37^{\circ}C$ for 1 h. Both testosterone and DHT were quantitatively measured and compared with two different GC-MS-based steroid profiling techniques. DHT was not detected by conventional GC-MS analysis in the absence of finasteride when the concentration of testosterone in the S9 fraction was less than $0.2{\mu}M$, whereas the isotope-dilution GC-MS (GC-IDMS) system was able to evaluate the $5{\alpha}R$ activity. Because the S9 fraction contains more reactive enzymes and is easier to collect from tissues compared with a microsomal solution, the combination of the S9 fraction and GC-IDMS technique may be a promising assay for evaluating the $5{\alpha}R$ activity in large-scale clinical studies.

Quantitative Speciation of Selenium in Human Blood Serum and Urine with AE- RP- and AF-HPLC-ICP/MS

  • Jeong, Ji-Sun;Lee, Jonghae;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3817-3824
    • /
    • 2013
  • Various separation modes in HPLC, such as anion exchange (AE), reversed-phase (RP), and affinity (AF) chromatography were examined for the separation of selenium species in human blood serum and urine. While RP- and AE-HPLC were mainly used for the separation of small molecular selenium species, double column AF-HPLC achieved the separation of selenoproteins in blood serum efficiently. Further, the effluent of AF-HPLC was enzymatically hydrolyzed and then analyzed with RP HPLC for selenoamino acid study. The versatility of the hybrid technique makes the in-depth study of selenium species possible. For quantification, post column isotope dilution (ID) with $^{78}Se$ spike was performed. ORC ICP/MS (octapole reaction cell inductively coupled plasma/mass spectrometry) was used with 4 mL $min^{-1}$ Hydrogen as reaction gas. In urine sample, inorganic selenium and SeCys were identified. In blood serum, selenoproteins GPx, SelP and SeAlb were detected and quantified. The concentration for GPx, SelP and SeAlb was $22.8{\pm}3.4\;ng\;g^{-1}$, $45.2{\pm}1.7\;ng\;g^{-1}$, and $16.1{\pm}2.2\;ng\;g^{-1}$, respectively when $^{80}Se/^{78}Se$ was used. The sum of these selenoproteins ($84.1{\pm}4.4\;ng\;g^{-1}$) agrees well with the total selenium concentration measured with the ID method of $87.0{\pm}3.0\;ng\;g^{-1}$. Enzymatic hydrolysis of each selenium proteins revealed that SeCys is the major amino acid for all three proteins and SeMet is contained in SeAlb only.

Measurement of heavy metals in antarctic soil at the king sejong station: application of isotope dilution inductively coupled plasma mass spectrometry (동위원소희석 ICP-MS분석법에 의한 남극 세종기지 주변 토양의 중금속 측정)

  • Suh, Jung-Ki;Hwang, Euijin;Min, Hyung Sik
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.364-374
    • /
    • 2008
  • Antarctic Environmental Monitoring Handbook' was published by COMNAP/SCAR in 2000. The standardized method described in this handbook is recommended for monitoring of antarctic environment. High pressure bomb technique in this guide was used to decompose soil samples. In compliance with this guide book, high pressure bomb technique was applied to decompose the antarctic soil sampled at the King Sejong Station. An Isotope Dilution-Inductively Coupled Plasma-Mass Spectrometry (ID-ICP-MS) was applied to determine mass concentrations of Pb, Cu and Zn in the soil. The accuracy in this method was verified by the analysis of certified reference materials (CRM) of NIST 2702 (marine sediment). The analytical results agreed with certified value within the range from 99.5~100.8%. Matrix separation was necessitated for the determination of Cu and Zn by Chelex 100 ion exchange resin. As a result, the average mass concentrations of Pb, Cu and Zn which are suspected to be caused by anthropogenic pollution were 332.9 mg/kg, 95.6 mg/kg and 115.3 mg/kg, respectively. Those for the metals sampled in the soils of the remote regions from the station were 28.1 mg/kg, 101.8 mg/kg and 115.6 mg/kg, respectively.

Analysis of Low Molecular Weight of Seleno compounds in Selenium-Fortified Spirulina (셀레늄 강화 스피룰리나에서의 낮은 분자량 셀레노 화합물 분석)

  • Ji, Young;Lee, Jung Suk;Han, Young-Seok;Pak, Yong N.
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.335-341
    • /
    • 2019
  • Spirulina was cultured in Selenium solution and the total concentration was determined with isotope dilution technique. Low-molecular-weight-Selenium species for the water extract of Spirulina were separated and quantified with HPLC ICP/MS. Water extraction was used first and then protein enzyme (protease XIV) was used to digest and extract for the Se species in both water extract and residue. The total Se was $414.9{\pm}4.0{\mu}g\;g^{-1}$ and 77% existed in water extract while 22% remained in residue. Se species in supernatant was mostly inorganic selenate ($222.7{\mu}g\;g^{-1}$). After hydrolysis of protein, SeCys ($15.20{\mu}g\;g^{-1}$) and SeMet ($12.13{\mu}g\;g^{-1}$) were found. In residue, SeCys and SeMet were found with little inorganic Se. After protein hydrolysis of residue, more of Selenoamino acids SeCys ($9.35{\mu}g\;g^{-1}$) and SeMet ($18.23{\mu}g\;g^{-1}$) in addition to MeSeCys ($1.5{\mu}g\;g^{-1}$) were found. It is thought that inorganic selenium is mostly adsorbed on the surface of spirulina and can be easily removed by a simple distilled water extraction while most of organo-seleniums are remained in residue.