• Title/Summary/Keyword: Isothiocyanate

Search Result 253, Processing Time 0.026 seconds

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.

Preparation and Release Behavior of Methoxy poly(ethylene glycol)- poly(L-lactide-co-glycolide) Wafer Containing Albumin (알부민을 함유한 메톡시 폴리(에틸렌 글리콜)- 폴리(L-락타이드-co-글리콜라이드) 웨이퍼의 제조 및 방출거동)

  • 서광수;김문석;김경자;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.328-334
    • /
    • 2004
  • A series of methoxy poly(ethylene glycol) (MPEG)-poly(L-lactide-co-glycolide) (PLGA) diblock copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with carbitol (134 g/mole) or different molecular weights of MPEG (550, 2000, and 5000 g/mole) as an initiator in presence of Sn(Oct)$_2$. The properties of diblock copolymers were characterized by using $^1$H-NMR, GPC, and XRD. After uniform mixing of block copolymers and 1% albumin bovine-fluorescein isothiocyanate(FITC-BSA) with a freeze miller, the wafers loaded FITC-BSA were fabricated by using a mold with a dimensions of 3 mm${\times}$1mm diameter. The release profiles of FITC-BSA and the pH changes of wafer were examined using pH 7.4 PBS for 30 days at 37$^{\circ}C$. The release profiles of albumin showed fast initial burst as the molecular weights of MPEG increased. As a result of this study, the release behavior of BSA was controlled with introducing MPEG in the block copolymers.

Casein Phosphopeptide (CPP)-Producing Activity and Proteolytic Ability by Some Lactic Acid Bacteria (유산균의 Casein Phosphopeptide(CPP) 생산 및 단백질 분해 활성)

  • Cho, Yoon-Hee;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.443-448
    • /
    • 2010
  • Casein phosphopeptide (CPP) enhances calcium absorption in humans. Lactic acid bacteria (LAB) are capable of synthesis of cell-surface proteinase, which can hydrolyze milk protein and release several types of peptides in the medium. This study was conducted to characterize proteinase of LAB and to evaluate the CPP production from bovine milk. The content of CPP of milk produced by cell-free extract of LAB was determined based on the quantity of decomposed peptide from casein using the O-phthaldialdehyde (OPA) method. The proteolytic activity of LAB was assayed using fluorescein isothiocyanate (FITC)-labeled casein. Casein appeared to be a better substrate than whey proteins for extracellular proteinases of LAB. During fermentation, milk proteins were hydrolyzed by extracellular proteinase of LAB, resulting in an increase in the amount of free $NH_3$ groups. Overall, the results presented here indicate that CPP produced by LAB may be a promising material for novel applications in the dairy industry.

Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

  • Yamasaki, Masayuki;Ogawa, Tetsuro;Wang, Li;Katsube, Takuya;Yamasaki, Yukikazu;Sun, Xufeng;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.267-272
    • /
    • 2013
  • The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPAR${\alpha}$ was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPAR${\gamma}$, and C/EBP${\alpha}$ were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.

High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

  • Park, Mi-Young;Kim, Min Young;Seo, Young Rok;Kim, Jong-Sang;Sung, Mi-Kyung
    • Journal of Cancer Prevention
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in $Apc^{Min/+}$ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2'-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis.

Induction of Apoptosis in AGS Human Gastric Cancer Cells by Platycarya strobilacea Leaf Extract (굴피나무 잎 추출물의 위암세포에 대한 세포사멸 유도 효과)

  • Lee, Hyeong-Seon
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.283-288
    • /
    • 2021
  • This study investigated the anticancer activity of methanol extract from Platycarya strobilacea leaf in AGS human gastric cancer cells. We determined the cell viability effect of P. strobilacea using MTS assay. Apoptosis induction and cell cycle arrest were confirmed by fluorescein isothiocyanate and propidium iodide staining using cellometer K2. The mRNA expression levels of the Bcl-2 family were confirmed by reverse transcription-polymerase chain reaction. The cell viability was decreased in a dose-dependent manner treated with different concentrations of P. strobilacea. Total, early, and late apoptotic cells were dramatically increased, and the cell cycle was arrested at the sub-G1 phase. The mRNA expressions of Bcl-2 and Bcl-xL were reduced, whereas pro-apoptotic factors, Bax and Bak, were increased in a dose-dependent manner. These results suggested that P. strobilacea leaf extract induced significant apoptotic activity through an intrinsic mitochondria pathway.

Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway

  • Xin, Chun;Quan, Hui;Kim, Joung-Min;Hur, Young-Hoe;Shin, Jae-Yun;Bae, Hong-Beom;Choi, Jeong-Il
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.394-401
    • /
    • 2019
  • Background: Ginsenoside Rb1, a triterpene saponin, is derived from the Panax ginseng root and has potent antiinflammatory activity. In this study, we determined if Rb1 can increase macrophage phagocytosis and elucidated the underlying mechanisms. Methods: To measure macrophage phagocytosis, mouse peritoneal macrophages or RAW 264.7 cells were cultured with fluorescein isothiocyanate-conjugated Escherichia coli, and the phagocytic index was determined by flow cytometry. Western blot analyses were performed. Results: Ginsenoside Rb1 increased macrophage phagocytosis and phosphorylation of p38 mitogenactivated protein kinase (MAPK), but inhibition of p38 MAPK activity with SB203580 decreased the phagocytic ability of macrophages. Rb1 also increased Akt phosphorylation, which was suppressed by LY294002, a phosphoinositide 3-kinase inhibitor. Rb1-induced Akt phosphorylation was inhibited by SB203580, (5Z)-7-oxozeaenol, and small-interfering RNA (siRNA)-mediated knockdown of $p38{\alpha}$ MAPK in macrophages. However, Rb1-induced p38 MAPK phosphorylation was not blocked by LY294002 or siRNA-mediated knockdown of Akt. The inhibition of Akt activation with siRNA or LY294002 also inhibited the Rb1-induced increase in phagocytosis. Rb1 increased macrophage phagocytosis of IgG-opsonized beads but not unopsonized beads. The phosphorylation of p21 activated kinase 1/2 and actin polymerization induced by IgG-opsonized beads and Rb1 were inhibited by SB203580 and LY294002. Intraperitoneal injection of Rb1 increased phosphorylation of p38 MAPK and Akt and the phagocytosis of bacteria in bronchoalveolar cells. Conclusion: These results suggest that ginsenoside Rb1 enhances the phagocytic capacity of macrophages for bacteria via activation of the p38/Akt pathway. Rb1 may be a useful pharmacological adjuvant for the treatment of bacterial infections in clinically relevant conditions.

Streptomycin-anionic linear globular dendrimer G2: Novel antibacterial and anticancer agent

  • Javadi, Sahar;Ardestani, Mehdi Shafiee
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.241-248
    • /
    • 2019
  • Recent researches demonstrated well promising anticancer activities for antibiotics. Such effects would be significantly increased while nanoparticle based delivery systems were applied. In this study, the goal was aim to improve anticancer and antitoxic effects of Streptomycin by loading on special kind of dendrimer (anionic-linear-globular second generation). In the current study, Size and zeta potential as well as AFM techniques have been used to prove the fact that the loading was performed correctly. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the drug loaded on dendrimer nanoparticle were determined and compared with both of dendrimer alone and free drug with respect to staphylococcus aureus as the test microorganism. The anticancer activity among three groups including Streptomycin, Streptomycin -G2 dendrimer, and control was measured in vitro. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which loaded on Streptomycin was able to significantly improve the treatment efficacy over clinical Streptomycin alone with respect to proliferation assay. Maximal inhibitory concentration (IC50) was calculated to be $257{\mu}g/mL$ for streptomycin alone and $55{\mu}g/mL$ for Streptomycin -G2 dendrimer. In addition, Streptomycin -G2 dendrimer conjugate prevented the growth of MCF-7 cancerous cells in addition to enhance the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. Streptomycin -G2 dendrimer conjugate was able to increase Bcl-2/Bax ratio in a large scale compared with the control group and Streptomycin alone. Based on results a new drug formulation based nano-particulate was improved against S. aureus with sustained release and enhanced antibacterial activity as well as anticancer activity shown for functional cancer treatment with low side effects.

Biphasic immunomodulatory effects of ionized biosilica water on the antigen-presenting capability of mouse dendritic cells (마우스 수지상세포의 항원 제시 능력에 대한 이온화 규소수의 biphasic 면역조절 효과)

  • Lee, You-Jeong;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.14.1-14.7
    • /
    • 2021
  • Biosilica is a silica-based substance derived from the cell walls (frustules) of diatoms. Recently, research into biosilica's biological functions is underway, but little has been reported on the effects of biosilica on immune cells. In this study, we investigated the effect of ionized biosilica water (iBW) on dendritic cells (DCs), which play crucial roles as antigen (Ag)-presenting cells. Treatment with iBW increased the expression of immune response-related markers, closely connected to the maturation of DCs, and the production of tumor necrosis factor-alpha. In addition, iBW-treated DCs (iBW-DCs) had a lower uptake of fluorescein isothiocyanate-dextran than that of control DCs. Mixed leukocyte response analysis used for measuring the Ag-presenting capability of DCs, showed iBW-DCs had a higher capability than that of control DCs. Interestingly, DCs treated with lipopolysaccharide (LPS) and iBW had a lower level of Ag-presenting capability than that of LPS-treated DCs. Taken together, the results indicate that iBW alone can mature DCs, but it decreases the Ag-presenting capability of DCs in the presence of LPS, a representative agent of inflammation. This study may provide valuable information regarding the effect of iBW on immune cells. Further research is needed to investigate how iBW induces the observed biphasic immunomodulatory activity.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.