• Title/Summary/Keyword: Isotherms

Search Result 653, Processing Time 0.036 seconds

Effect of Particle Size of Sediment on Adsorption of Fluoride (하천 퇴적물의 입자크기에 따른 불소의 흡착 특성)

  • Kim, Chae-Lim;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.289-295
    • /
    • 2016
  • The purpose of this study is to find out the effect of particle size of sediment on adsorption of fluoride. Particle size is classified as sand, silt and clay. Adsorption equilibrium time, adsorption isotherms and the effect of pH were investigated through batch tests. The $pH_{pzc}$ of sand, silt, clay was respectively 6, 8, 4.5 and AEC (anion exchange capacity) was highest in silt, respectively 0.0095, 0.0224, $0.014meq\;g^{-1}$. Adsorption of fluoride on the sediment was in equilibrium within 300 minutes from all particle size. The experimental data of isotherms at various pH were well explained by Freundlich equation. As the experimental results of the effect of pH, the adsorption efficiency of sand and silt were reduced after the $pH_{pzc}$. However, the adsorption efficiency of clay was maintained after the $pH_{pzc}$, and decreased rapidly higher than pH 12.

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface (II)

  • Lee Soon-Bo;Boo Jin-Hyo;Ham Kyoung-Hee;Ahn Woon-Sun;Lee Kwang-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The isotherms of oxygen chemisorption on polycrystaline nickel surface are obtained at various temperatures between 298K and 523K from intensity measurernent of O 1s xps peaks, and the activation energy of the chemisorption is estimated as a function of the coverage. The activation energy extrapolated to zero coverage is found to be -5.9 kJ/mol. The negative activation energy can be taken as a strong implication of the propriety of a currently accepted chemisorption model, in which molecularly adsorbed precursor state is assumed to exist. The residence time of this precursor state is estimated by assuming a molecularly physisorbed state for the precursor state and assuming a pairwise interaction energy of Lennard-Jones 12-6 potential between an admolecule and each substrate nickel atom. The sticking coefficients are also calculated from the isotherms. The calculated results agree well with those obtained by others with different methods.

Adsorption kinetics and isotherms of phosphate and its removal from wastewater using mesoporous titanium oxide

  • Lee, Kwanyong;Jutidamrongphan, Warangkana;Lee, Seokwon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • The adsorption of phosphate onto mesoporous $TiO_2$ was investigated in order to reduce phosphorus concentrations in wastewater and provide a potential mode of phosphorus recovery. Three equilibrium isotherms were used to optimize and properly describe phosphate adsorption ($R^2$>0.95). The maximum capacity of phosphate on the adsorbent was found to be 50.4 mg/g, which indicated that mesoporous $TiO_2$ could be an alternative to mesoporous $ZrO_2$ as an adsorbent. A pseudo-second order model was appropriately fitted with experimental data ($R^2$>0.93). Furthermore, the suitable pH for phosphate removal by $TiO_2$ was observed to be in the range of pH 3-7 in accordance with ion dissociation. In contrast, increasing the pH to produce more basic conditions noticeably disturbed the adsorption process. Moreover, the kinetics of the conducted temperature study revealed that phosphate adsorption onto the $TiO_2$ adsorbent is an exothermic process that could have spontaneously occurred and resulted in a higher randomness of the system. In this study, the maximum adsorption using real wastewater was observed at $30^{\circ}C$.

Determination of Adsorption Isotherms of Hydrogen at an Ir Electrode Interface Using the Phase-Shift Method and Correlation Constants (Ir 전극 계면에서 위상이동 방법 및 상관계수를 이용한 수소의 흡착동온식 결정)

  • Jeon, Sang-K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • The phase-shift method and correlation constants for studying a linear relationship between the behavior ($-{\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and that (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}\theta{\geq}0$) have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) at noble metal/aqueous electrolyte interfaces. At an Ir/0.1 M KOH aqueous electrolyte interface, the Langmuir and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=3.3{\times}10^{-4}\;mol^{-1}$ for the Langmuir and $K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}$ for the Temkin adsorption isotherm), interaction parameter (g = 4.6 for the Temkin adsorption isotherm), and standard free energies (${\Delta}G_{ads}^0=19.9kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-4}\;mol^{-1}$ and $16.5<{\Delta}G_{\theta}^0<23.3\;kJ\;mol^{-1}\;for\;K=3.3{\times}10^{-3}{\exp}(-4.6{\theta})\;mol^{-1}\;and\;0.2<\theta<0.8$) of H for the cathodic $H_2$ evolution reaction are determined using the phase-shift method and correlation constants. The inhomogeneous and lateral interaction effects on the adsorption of H are negligible. At the intermediate values of ${\theta},\;i.e,\;0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms (${\theta}\;vs.\;E$) and related electrode kinetic and thermodynamic parameters(K, g, ${\Delta}G_{ads}^0, {\Delta}G_{\theta}^0$).

Moisture sorption isotherms of corn powder as affected by roasting temperature (볶음온도에 따른 옥수수 분말의 흡습특성)

  • Chung, Hun-Sik;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.334-340
    • /
    • 2014
  • The moisture sorption isotherms of corn powder prepared from corn kernels roasted for 20 min at 160, 180, 200, 220, and $240^{\circ}C$ were determined at $20^{\circ}C$ using the static gravimetric method over the range of water activities ($a_w$) of 0.11~0.90. The moisture sorption isotherms showed a typical sigmoid shape, and the equilibrium moisture content tended to increase with increasing $a_w$, and increased sharply at above 0.75 $a_w$. At above 0.53 $a_w$, the equilibrium moisture content of the roasted corn powder increased with the increase in the roasting temperature. Six mathematical models (Bradley, Caurie, Halsey, Henderson, Kuhn, and Oswin) were used to fit the experimental data. The Oswin, Caurie, Henderson, and Halsey models were found to have suitability for describing the sorption curves, and the Oswin model was the best fit model for all the roasting temperatures. Concerning the monolayer moisture content, the Guggenheim-Anderson-Boer (GAB) equation showed high significance. The monolayer moisture content increased as the roasting temperature was increased, to 0.043 and 0.053 kg $H_2O/kg$ solids in the corn powder roasted at $180^{\circ}C$ and $240^{\circ}C$, respectively. These results suggest that the roasting temperatures of the corn kernels affected the moisture sorption characteristics ($20^{\circ}C$) of the corn powder.

Cadmium Adsorption and Exchangeable Cations Desorption in Soils: Effects of pH and Organic Matter Content (토양에서 카드뮴의 흡착과 치환성양이온의 탈착 : pH와 유기물함량의 영향)

  • 박병윤;신현무
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.243-252
    • /
    • 1996
  • In order to investigate the effects of pH and organic matter content on cadmium adsorption and exchangeable cations desorption in soils, the adsorption isotherms of cadmium and the desorption isotherms of calcium and magnesium on four New jersey soils at four pH values were plotted, and the cadmium partition coefficients (Kd) were also calculated. The slopes of cadmium adsorption isotherms dramatically increased with increasing solution pH. Judging from Langmuir adsorption equations, the maximum adsorption quantities(b) of cadmium at high pH values were much greater than those at low pH values for the same soil. The partition coefficients increased greatly with increasing solution pH. The slopes of regression equations between partition coefficients and pH values were steep in the order of the organic matter content of the soils. The correlation coefficients (r2) between partition coefficient and organic matter content for soils. The correlation coefficients (r2) between partition coefficient and organic matter content for $1\times10^{-4}$M increased from 0.3027 at pH 4.0 to 0.9964 at pH 8.5 and from 0.2093 at pH4.0 at 0.9657 at pH 8.5 for$2\times10^{-4}$M ${Cd(NO_3)}_2$. The desorption quantities of calcium and magnesium decreased with increasing solution pH and increased with- increasing cadmium adsorption.

  • PDF

Separation Characteristics of Mandelic Acid in Kromasil HPLC Column (Kromasil HPLC 칼럼에서 Mandelic Acid의 분리특성)

  • Kim, Byung Lip;Kim, Jong Min;Kim, Woo Sik;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.681-685
    • /
    • 2008
  • Chiral separation of racemic mandelic acid was achieved on a Kromasil KR100-5CHI-TBB column. Some chromatographic parameters (resolution, number of theoretical plates, capacity factor) are calculated under different separation conditions such as changes of mobile phase compositions (hexane/t-BME = 85/15 - 10/90) as well as formic acid concentrations for adjusting pH (0.1, 0.5, 1.0 v/v%). Flow rate versus number of theoretical plates was compared to evaluate column efficiency. To determine the adsorption isotherms, PIM (Pulse Input Method) was carried out. At the concentrations of racemic mandelic acid between 0.1 and 0.3 mg/ml, L- and D-mandelic acids have the same retention times of 8.8 and 9.4 min respectively. Mandelic acid isotherms show a linear form under the concentrations of 0.3 mg/ml with eluent (hexane/t-BME = 75/25). As the concentrations of mandelic acids increase, nonlinear Langmuir isotherms were observed as $C_{S,L}=3.358C_{M,L}/(1+0.0897C_{M,L})$ for L-mandelic acid and, $C_{S,D}=3.692C_{M,D}/(1+0.1457C_{M,D})$ for D-mandelic acid.

Separation of Vanadium and Tungsten from Simulated Leach Solutions using Anion Exchange Resins (음이온교환 수지를 이용한 바나듐/텅스텐 혼합용액으로부터 바나듐/텅스텐 분리회수에 관한 연구)

  • Jong Hyuk Jeon;Hong In Kim;Jin Young Lee;Rajesh Kumar Jyothi
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.25-35
    • /
    • 2022
  • The adsorption/desorption behavior and separation conditions of vanadium and tungsten ions were investigated using a gel-type anion-exchange resin. In the adsorption experiment with the initial acidity of the solution, the adsorption rate of vanadium was remarkably low in strong acids and bases. Additionally, the adsorption rate of tungsten was low in a strong base. An increase in the reaction temperature increased the adsorption reaction rate and maximum adsorption. The effect of tungsten on the maximum adsorption was minimal. The adsorption isotherms of vanadium and tungsten on the ion-exchange resin were suitable for the Langmuir adsorption isotherms of both the ions. For tungsten, the adsorption isotherms of vanadium and tungsten were polyoxometalate. Both ion-exchange resins were simulated using similar quadratic reaction rate models. Vanadium was desorbed in the aqueous solutions of HCl or NaOH, the desorption characteristics of vanadium and tungsten depended on the desorption solution, and tungsten was desorbed in the aqueous solution of NaOH. It was possible to separate the two ions using the desorption process. The desorption reaction reached equilibrium within 30 min, and more than 90% recovery was possible.

Solubilization Characteristics of trichloroethylene(TCE) in nonionic surfactants

  • Yul Ri A, Lee;Ho Jeong, Kim;Ji Won, Yang
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.328-331
    • /
    • 2004
  • Solubilization isotherms of TCE in the nonionic surfactants were studied. In this research, the maximum solubilization of TCE in the micelle was observed at the HLB of approximately 15. Increasing carbon number, solubilization of TCE was enhanced with the same ethoxylated alcohols number in brij surfactants.

  • PDF

GAS PERMEATION THROUGH GLASSY POLYMER MEMBRANES WITH HIGH GLASS-TRANSITION TEMPERATURE

  • Kumazawa, Hidehiro
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.13-20
    • /
    • 1993
  • The sorption equilibria and permeation rates for carbon dioxide in such glassy polymer membranes with high glass-transition temperature as polyimide, polyetherimide, polysulfone and polyethersulfone membranes, were measured. The sorption isotherms for these systems can be described well by the dual-mode sorption model, whereas the pressure dependences of the mean permeability coefficients are simulated better by a modified dual-mode mobility model than the conventional dual-mode mobility model in which the Henry's law and Langmuir populations execute four kinds of diffusive movement.

  • PDF