• Title/Summary/Keyword: Isothermal Process

Search Result 344, Processing Time 0.023 seconds

Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing (잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가)

  • Choi, Soo-Hong;Jung, Jung-Kyu;Kim, In-Young;Jung, Hyun-Chul;Joung, Jae-Woo;Joo, Young-Chang
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.

Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon (활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.190-197
    • /
    • 2019
  • The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, ($R_L=0.02{\sim}0.106$), this process could be employed as the effective treatment (0 < $R_L$ < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.

Change in Microstructure with the Gas Quenching Rate during Austempering Treatment of SAE 1078 Steel (SAE 1078 강의 오스템퍼링 열처리시 가스 퀜칭 속도에 따른 미세조직의 변화)

  • Gi-Hoon Kwon;Hyunjun Park;Kuk-Hyun Yeo;Young-Kook Lee;Sang-Gweon Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • When high carbon steel is heated in an appropriate austenizing temperature range and subjected to austempering, the size and shape of lamellar structure can be controlled. The high carbon steel sheet having the pearlite structure has excellent elastic characteristics because it has strong restoring force when properly rolled, and is applied in a process known as patenting-process using lead bath. In the case of isothermal treatment using lead-medium, it is possible to quickly reach a uniform temperature due to high heat transfer characteristics, but it is difficult to replace it with process technology that requires treatment to remove harmfulness lead. In this study, we intend to develop fluidization technology using garnet powder to replace the lead medium. After heating the high-carbon steel, the cooling rate was changed by compressed air to the vicinity of the nose of the continuous cooling curve, and then maintained for 90 s and then exposed to room temperature. The microstructure of the treated specimens were analyzed and compared with the existing products treated with lead bath. The higher the flow rate of compressed air, the faster the cooling rate to the pearlite transformation temperature, so lamellar spacing decreases and the hardness tends to increase.

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석)

  • Lee, Yongkyu;Jung, Ikhwan;Na, Jonggeol;Park, Seongho;Kshetrimayum, Krishnadash S.;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.818-823
    • /
    • 2015
  • In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of $H_2$ and CO($H_2/CO$ molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = $10000h^{-1}$, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.

Viscoelastic Properties of MF/PVAc Hybrid Resins as Adhesive for Engineered Flooring by Dynamic Mechanical Thermal Analysis

  • Kim, Sumin;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2006
  • The viscoelastic properties of blends of melamine-formaldehyde (MF) resin and poly(vinyl acetate) (PVAc) for engineered flooring used on the Korean traditional ONDOL house floor heating system were investigated by dynamic mechanical thermal analysis (DMTA). Because MF resin is a thermosetting adhesive, the effect of MF rein was shown across all thermal behaviors. The addition of PVAc reduced the curing temperature. The DMTA thermogram of MF resin showed that the storage modulus (E') increased as the temperature was further increased as a result of the cross-linking induced by the curing reaction of the resin. The storage modulus (E') of MF resin increased both as a function of increasing temperature and with increasing heating rate. From isothermal DMTA results, peak $T_{tan{\delta}}$ values, maximum value of loss modulus (E") and the rigidities (${\Delta}E$) of MF/PVAc blends at room temperature as a function of open time, peak $T_{tan{\delta}}$ and maximum loss modulus (E") values were found to increase with blend MF content. Moreover, the rigidities of the 70:30 and 50:50 MF/PVAc blends were higher than those of the other blends, especially of 100% PVAc or MF. We concluded that blends the MF/PVAc blend ratios correlate during the adhesion process.

An Experimental Study on the Fabrication and the Compression Behavior of Semi-Solid Aluminum Material (반응용 알루미늄재료의 제조 및 압축거동에 관한 실험적 연구)

  • Gang, Chung-Gil;Yun, Jong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.796-805
    • /
    • 1996
  • A fabrication process using Semi-Solid Material(SSM) for casting alloy has been studied to demonstrate the possibility for mass production with controlled solid fraction. The SSM was fabricated under the various solid fractions and preheating temperatures of mold. The behaviour of a semi-solid global microstructure has been investigated under the various heating and die temperatures for solid fraction. The effect of reheating time on the globularization of SSM microstructure has been investigated in detail. And the behavior of SSM which has the solid fraction 0.5 was observed under compression. The stress strain relationship was also obtained for the compression test of semi-solid materials. The rheological behaviour of semi-solid with globule microstructure was investigated as a function of the compression velocity under isothermal holing conditions.

Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding (다층 예비성형체에 대한 삼차원 충진해석)

  • Yang, Mei;Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

The Thermal Degradation Mechanism of Polymethyl Methacrylate Blend (Polymethyl Methacrylate Blend의 열화에 따른 분해기구 해석에 관한 연구)

  • Kim, Dong-Keun;Moon, Myeong-Ho;Seul, Soo-Duk;Sohn, Jin-Eon
    • Elastomers and Composites
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 1988
  • The thermal degradation of polymethyl methacrylate(PMMA) blend namely polymethyl methacrylate-polycarbonate(PMMA-PC) blend and polymethyl methacrylate-polystyrene(PMMA-PS) blend were carried out by isothermal method under air at several heating temperature from 220 to $270^{\circ}C$. Molecular weight changes during the thermal decomposition were monitored by means of the viscosity average molecular weight($\bar{M}v$). The viscosity average molecular weight was determined by Gel Permeation Chromatography(GPC). The dominant process in the degradation of PMMA-PC and PMMA-PS blend were main chain scission randomly due to weak links that may be distributed along the polymer backbone and the initial rate which the bonds are broken is not sustained. The infra-red spectra of degraded PMMA-PS blend show that the presence of aromatic ketone band at $1685cm^{-1}$. However, the infra-red spectra of degraded PMMA-PC blend show that the presence of hydroperoxide band at $3450cm^{-1}$. Thus indicating that the weak links are attacked by oxygen from the air and produce hydroperoxide or ketone. The activation energies of PMMA-PC blend and PMMA-PS blend were 18.2 and 17.9 Kcal/mol, respectively.

  • PDF

An Analysis of Gravity-Assisted Melting of Subcooled Solid Filled Inside a Spherical Capsule (구형용기내 고상의 하강운동을 고려한 융해과정의 해석)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2601-2610
    • /
    • 1993
  • A numerical study on the melting process inside an isothermal spherical capsule is made. It is assumed that the phase change medium of its solid phase is heavier than the liquid phase and therefore the unmelted solid core is continuously moving downward on account of gravity forces. Such a gravity-assisted melting is commonly characterized by the existence of a thin liquid film below the solid core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow and heat transfer characteristics associated with the gravity-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved without subdivision of the solution domains. For example, the liquid film region and the upper melted region are treated here as one domain and thus obviating laborious efforts to couple them. Numerical results are obtained by varying the Rayleigh numbers and the degree of subcooling. For the range of parameters examined, the presence of subcooling was found to impede the melting rate. The dropping velocity of the unmelted solid core was observed to affect the natural convection in the liquid significantly. When compared with the available experimental data, much improved prediction was achieved.