• Title/Summary/Keyword: Isothermal Model

Search Result 285, Processing Time 0.026 seconds

A Basic Study for the Propagation Characteristics Due to the Horizontal Water Temperature Variations in the Sea (해양에서의 수평적 수온변화가 음파전달에 미치는 영향에 대한 기초적 연구)

  • Ha, Kang-Lyeol;Kim, Moo-Joon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.395-401
    • /
    • 1996
  • In this paper, the propagation characteristics due to the horizontal water temperature variations in the sea such as thermal fronts is analyzed by the ray theory. Two models for the temperature anomaly layer are chosen. One is a plane type and the other is a cylindrical type. In the plane type, the temperature increases linearly from a isothermal region to 5km with the gradient of about $2^{\circ}C.$/km, and decreases with the same gradient in next 5km. In the cylindrical type, water temperature increases only with the same gradient from a half cylindrical thermal boundary surface. The result showed that the gradient of acoustic rays decreases in the temperature increasing region and vice versa in temperature decreasing region. And, the transmission loss due to the temperature variation was less than O.2dB in the plane type model as well as in the cylindrical one.

  • PDF

MODELING OF THE BAINITE TRANSFORMATION KINETICS IN C-MN-MO-NI STEEL WELD CGHAZ

  • Sangho Uhm;Lee, Changhee;Kim, Joohak;JunhwaHong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.276-281
    • /
    • 2002
  • A metallurgical model for bainite transformation kinetics in the coarse-grained heat affected zone(CGHAZ) on the basis of an Avrami-type equation was studied. Isothermal transformation tests were carried out to obtain the empirical equations for incubation time and Avrami kinetic constants for C-Mn-Mo-Ni steel. The effect of prior austenite grain size(PAGS) on the reaction rate of bainite was also investigated. Compared with experimental transformation behavior of bainite, the predicted behavior was in good agreement. It was also found that a smaller grain size retard the bainite reaction rate, contrary to the classical grain size effect and this is considered to be caused by constraint of grain size to bainite growth.

  • PDF

SED modeling of the Class 0 protostar L1527 IRS

  • Baek, Giseon;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.3-55
    • /
    • 2016
  • We model the spectral energy distribution (SED) of the Class 0 protostar L1527 IRS using a dust continuum radiative transfer code RADMC-3D to study the initial condition of gravitational collapse. To constrain the envelope structure, we use the data obtained by Herschel /PACS, which covers the far-infrared regime ($55-190{\mu}m$) where the SED of L1527 IRS peaks. According to our modeling, a more flattened density profile fits the far-infrared SED of L1527 IRS better than the density profile of a rotating and infalling envelope. Thus, we employ the density structure of a Bonnor-Ebert sphere, which consists of the inner flat-topped and the outer power-law regions and is often used for describing the density structure of the youngest sources in the low mass star formation process. A Bonnor-Ebert sphere fits very well the observed SED at ${\lambda}$ > $10{\mu}m$, suggesting that L1527 IRS might collapse from an unstable Bonnor-Ebert sphere rather than a singular isothermal sphere.

  • PDF

Parallelized Unstructured-Grid Finite Volume Method for Modeling Radiative Heat Transfer

  • Kim Gunhong;Kim Seokgwon;Kim Yongmo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1006-1017
    • /
    • 2005
  • In this work, we developed an accurate and efficient radiative finite volume method applicable for the complex 2D planar and 3D geometries using an unstructured-grid finite volume method. The present numerical model has fully been validated by several benchmark cases including the radiative heat transfer in quadrilateral enclosure with isothermal medium, tetrahedral enclosure, a three-dimensional idealized furnace, as well as convection-coupled radiative heat transfer in a square enclosure. The numerical results for all cases are well agreed with the previous results. Special emphasis is given to the parallelization of the unstructured-grid radiative FVM using the domain decomposition approach. Numerical results indicate that the present parallel unstruc­tured-grid FVM has the good performance in terms of accuracy, geometric flexibility, and computational efficiency.

Numerical analysis of internal flow and mixing performance in polymer extruder I: single screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in a single screw extruder system and investigated the mixing performance with respect to the screw speed and the screw pitch. The viscosity of polymer melt was described with Carreau-Yasuda model. The mixing performance was computed numerically by tracking the motions of particles in the screw element system. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the strain. The results revealed that the high screw speed reduces the residence time but increases the deformation rate while the small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance and the small screw pitch increases the distributive mixing performance.

Estimating the Glass Transition of Oligosaccharides Mixtures through the State Diagram

  • Auh, Joong-Hyuck;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.301-303
    • /
    • 2005
  • State diagram of highly concentrated branched oligosaccharides (HBOS) was constructed to better understand phase behavior of mixtures with different size of oligosaccharides. It showed dramatic plasticizing effect on glass transition, which was successfully described based on Couchman-Karasz equation model. $T_g$' estimated from state diagram corresponded well with previous empirical data measured by maximum ice formation through isothermal holding (annealing) process. Estimated $T_g$' and $C_g$' values were $-36.3^{\circ}C$ and 79.99%, respectively. $T_g$' value of HBOS was approximately $10^{\circ}C$ higher than that of sucrose, while $C_g$' value was similar to those of general carbohydrate materials, which could be useful for applications in frozen system.

The Effect of Aging and Temperature on the Splitting Tensile Strength of Concrete (재령과 온도가 콘크리트의 쪼갬인장강도에 미치는 영향)

  • 강승민;안남식;양성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.745-750
    • /
    • 2003
  • Used domestic aggregate for concrete pavement, the splitting tensile strength of concrete were investigated and quantitative analyses for the characteristics of the experimental factors were evaluated. This paper reports the results of curing temperature and age on the splitting tensile strength and it suggests a prediction model based on these experimental results. Tests of cylindrical specimens made of granite as a coarse aggregate, cured in isothermal conditions of 0, 23, and $45^{\circ}C$ and tested at the ages of 1, 7, and 28 days are reported. Based on the experimental result, the relationships between the splitting tensile strength and maturity were analyzed and proposed.

  • PDF

Comparative Analysis of Models for Free Convective Film Condensation on an Isothermal Vertical Wall (등온 수직벽의 자연대류 막응축 모델에 관한 비교분석)

  • Sung, Hyun-Chan;Kim, Kyoung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.31-36
    • /
    • 2000
  • The existing theoretical models for steady two-dimensional free convective laminar film condensation or pure saturated or superheated vapor under atmospheric pressure on isotheraml vertical wall have been reviewed. To investigate the effects of inertia, thermal convective and liquid-vapor interface shear stress, the models of constant or variable properties in liquid film for condensation of saturated vapor are compared in detail with Nusselt model. Also, for condensation of superheated vapor the effects of superheated temperature and variable properties in liquid and vapor layer are examined and then new correlation is proposed to predict the heat transfer. The results are in good agreement with the Shang's correlation within 2% errors.

  • PDF

A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions (벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석)

  • Kim, Nam-Il;Maruta, Kaoru
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.