• Title/Summary/Keyword: Isothermal DSC(differential scanning calorimetry)

Search Result 42, Processing Time 0.026 seconds

Study on the thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-Wait-Search method) & isothermal conditions (ARC(Heat-Wait-Search method)와 isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Jinseuk;Kim, Seunghee;Kwon, Kuktae;Chu, Chorong;Jeon, Yeongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.172-178
    • /
    • 2017
  • Thermal property is one of the important characteristic in the field of energetic materials. As the energy material is released during decomposition, DSC(Differential Scanning Calorimetry) is frequently used for the thermal analysis. In case of the dynamic DSC measurements, thermal dynamic change like melting is prevented from the thermal property measurements. And due to the predicting kg scale, the conditions of the heat exchange with the environment significantly is changed. In this study, As the method to resolve the problem, we predict the thermal aging property using the AKTS thermokinetic program from DSC measurements which performed isothermal method. Predicting the thermal aging properties from ARC(Accelerating Rate Calorimetry) measurement, we compare two results.

  • PDF

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Kinetic Measurements on Elastomer by Differential Scanning Calorimetry (Differential Scanning Calorimetry에 의(依)한 탄성체(彈性體)의 속도론적(速度論的) 연구(硏究))

  • Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.333-339
    • /
    • 1987
  • A modern kinetic evaluation method for nonisothermal reactions measured with Differential Scanning Calorimetry(DSC) is presented. It is based on multiple linear regression analysis using a number of curve points in a selectable range of conversion. The obtained kinetic data are the basis to compute a reaction process under any condition e.g. isothermal or adiabatic. The DSC measurements was performed on a Mettler TA3000 SYSTEM with the built in evaluation software. Mainly the following reactions are discussed: vulcanization of natural rubber compounds containing vulcanizing accelerators. The purpose of this work is to analyse the vulcanization kinetics of typical NR vulcanization systems using DSC. These systems were chosen because they are typically reactive elastomer and are commercially important.

  • PDF

Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry (시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구)

  • Hyun, Dong Keun;Lee, Byoung Eon;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • The cure kinetics of carbon fiber-reinforced prepreg for Vacuum Bag Only(VBO) process was studied by differential scanning calorimetry (DSC). The total heat of reaction (ΔHtotal = 537.1 J/g) was defined by the dynamic scanning test using prepregs and isothermal scanning tests were performed at 130℃~180℃. The test results of isothermal scanning were observed that the heat of reaction was increased as the temperature elevated. The Kratz model was applied to analyze the cure kinetics of resin based on the test results. To verify the simulation model, the degree of cure from panels using different cure cycles were compared with the measurement. The simulation model showed that the error against the experimental value was less than 3.4%.

An Experimental Study on Measurement of the Reaction Order of a Liquid Fuel with Various Components (혼합 액체연료의 화학반응차수 계측에 관한 실험적 연구)

  • Choi, Hyo-Hyun;Lim, Jun-Seok;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.421-424
    • /
    • 2011
  • Thermal Analyses are conducted to measure various factors of a liquid fuel required for numerical analysis. Thermal Analyses are divided into two different methods of TGA (Thermo Gravimetric Analysis) and DSC (Differential Scanning Calorimetry). Non-isothermal experimental results are analyzed using by TGA. The results are filtered by a Freeman Carroll method. At the same time, chemical parameters of unknown liquid fuel, activation temperature and reaction order are measured to 6128.2 K and 1.4, respectively. Furthermore, the parameters can be obtained by various mathematical methods. It is found that tha parameters depend on the processing method.

  • PDF

Kinetics on the Thermal Decomposition of Cellulose (셀룰로오스의 열분해 반응속도론)

  • 최승찬;박영수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.55-62
    • /
    • 1983
  • Four of non- isothermal methods evaluating kinetics have been studied by using differential scanning calorimetry (DSC) and thermogravimetry (TG) and applied for kinetics of the thermal decomposition of cellulose. It is concluded that the heating evolution methods with DSC and approximative methods with TC can lead to satisfactory kinetic analysis. Results calculating the reacting order and the activation energy of cellulose decomposition were 1/2 order and 42kcaB/mol, respectively.

  • PDF

Kinetics analysis of energetic material using isothermal DSC (등온 DSC를 이용한 고에너지 물질의 정밀 반응 모델 기법 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.219-222
    • /
    • 2015
  • The kinetic analysis of energetic materials using Differential Scanning Calorimetry (DSC) is proposed. Friedman Isoconversional method is applied to DSC experiment data and AKTS software is used for analysis. The frequency factor and activation energy are extracted as a function of product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the response of energetic materials; instead, multiple set of Arrhenius factors are used in describing a single global step. The proposed kinetic scheme has considerable advantage over the standard method based on One-Dimenaionl Time to Explosion (ODTX). Reaction rate and product mass fraction simulation are conducted to validate extracted kinetic scheme. Also a slow cook-off simulation is implemented for validating the applicability of the extracted kinetics scheme to a practical thermal experiment.

  • PDF

Cure Shrinkage Behavior of Polymer Matrix Composite according to Degree of Cure (경화도에 따른 고분자 기지 복합재의 경화 수축률 거동)

  • Kwon, Hyuk;Hwang, Seong-Soon;Choi, Won-Jong;Lee, Jae-Hwan;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.90-95
    • /
    • 2014
  • Cure shrinkage during cure process of polymer matrix composites develope residual stress that cause some structural deformation, such as spring-in, spring-out and warpage. The carbon/epoxy prepreg used in this study is Hexply M21EV/34%/UD268NFS/IMA-12K supplied by Hexcel corp. Cure shrinkage and degree of cure measured by TMA(thermomechanical analyzer) and DSC(differential scanning calorimetry). Cure shrinkages are measured by TMA within a temperature range of $140{\sim}240^{\circ}C$ in a nitrogen atmosphere, and degree of cure determined by the heat of reaction using dynamic and isothermal DSC runs in argon atmosphere. As a result, the cure shrinkage is increased dramatically in a degree of cure range between 27~80%. the higher the cure temperature, the lower the degree of cure occurring to begin cure shrinkage.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF