• Title/Summary/Keyword: Isostatic

Search Result 231, Processing Time 0.025 seconds

Creep Densification of Metal Powder Compacts (금속분말 성형체의 크리프 치밀화 거동)

  • Song, Min-Cheol;Kim, Hong-Gi;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.816-824
    • /
    • 1996
  • The densification behaviors of copper powder under high temperature processing were investigated. Experimental data were obtained for copper powder under hot isostatic pressing, hot pressing and uniaxial compression. Finite element calculations from the constitutive models by McMeeking and co-workers were compared with the experimental data, The agreements between experimental data and theoretical calculations are reasonably good when hydrostatic stress is dominant, but not as good then deviatoric stress increases.

A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction (냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1376-1383
    • /
    • 2006
  • Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.

Micro Scale Mechanical property of Polymeric materials for FPD(Flat Panel display) (FPD에 사용되는 고분자 재료의 기계적 물성특성 연구)

  • Lee N.K.;Lee H.J.;Lee H.W.;Chong E.G.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.220-224
    • /
    • 2005
  • The technology trend of Flat Panel Display (FPD) equipments have been demanded that there are compact and multi-function. Therefore, nano/micro scale patterned on polymeric materials of Back Light Unit (BLU) in Liquid Crystal Display (LCD) that has been investigated. This paper describes a series of Horizontal Type Micro Tensile Tester that were carried out to investigate the load strain distance performance of typical polymeric material sheets. The polymeric materials film that micro size shaped specimens for tensile test are used by Cold-Isostatic-Press (CIP). Test equipment is Horizontal type Micro Tensile Tester that is presented to measure the micro scale mechanical property of thin film for FPD. This paper presents which easy testing tools measure for micro patterned on polyethylene (PET) specimens.

  • PDF

High Temperature Densification Forming Process of Tool Steel Powder Compact (공구강 분말 성형체의 고온 치밀화 성형공정)

  • Choi, Hak-Hyeon;Jeon, Yun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.

Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing (나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석)

  • 윤승채;김형섭;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

A Model on the Densification of Agglomerates of Powders (분말 응집체의 치밀화에 관한 모델)

  • 김형섭;이재성
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • Successful implementation of the powder forming process requires a detailed understanding of several interacting phenomena. The aim is to better control the process variables and to optimize the design parameters. A number of studies were carried out using various constitutive models that take the density change during powder forming into account. Most of them were developed for powders and sintered porous metals, but few of them can describe powder agglomerates, whose behaviour is different from that of uniformly arranged powders. The modification is needed to account for the effect of agglomeration on densification behaviour. Incorporating powder agglomeration into a constitutive model is of considerable importance, as it provides a possibility of relating the powder densification response to microstructural characteristics of powder particles, especially in case of nano powders. In this paper, we proposed a new powder agglomerate model in order to describe the unique densification behaviour of nano powders. The proposed model was applied to the densification of powder agglomerates during cold isostatic pressing.

Fabrication Method Of Micro Embossing Patterned Metallic Thin Foil Using CIP Process and It's Mechanical Property (냉간 등방압 성형공정을 이용한 마이크로 엠보싱 패턴 성형 및 기계적 물성 측정)

  • Lee, H.J.;Lee, N.K.;Lee, G.A.;Lee, H.W.;Choi, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.243-246
    • /
    • 2006
  • In this paper, Experimental results on the measurement of mechanical properties of fine patterns in the MEMS structure are described. The mechanical properties of embossing patterns on metallic thin foil is measured using the nano indentation system, that is developed by Korea Institute of Industrial Technology(KITECH). These micro embossing patterns are fabricated using CIP(Cold Isostatic Press) process on micro metallic thin foils(Al-1100) that are made by rolling process. These embossing patterned metallic thin foils(Al-1100) are used in the reflecting plate of BLU(Back Light Unit) and electrical/mechanical MEMS components. If these mechanical properties of fine patterns are utilized in a design procedure, the optimal design can be achieved in aspects of reliability as well as economy.

  • PDF

Densification Behavior of Aluminum Alloy Powder Mixed with Zirconia Powder Inclusion Under Cold Compaction (냉간압축 하에서 지르코니아 분말이 혼합된 알루미늄합금 분말의 치밀화 거동)

  • Ryu, Hyun-Seok;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1324-1331
    • /
    • 2002
  • Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The Cap model with constraint factors was implemented into a finite element program (ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the Cap model with constraint factors were good.

A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing (온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Ki-Tae;Yang, Hoon-Chul;Kim, Jong-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF