• 제목/요약/키워드: Isoparametric element

검색결과 214건 처리시간 0.027초

도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발 (Development of Viscoelastic Finite Element Analysis Code for Pavement Structures)

  • 이창준;유평준;최지영;엄병식
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.

압축응력장 이론을 적용한 콘크리트 유한요소법 개발 (Finite Element Method for Structural Concrete Based on the Compression Field Theory)

  • 조순호
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.151-159
    • /
    • 1996
  • 구조용 콘크리트의 비선형 거동을 예측하기 위하여, 압축강도 연화현상, 거시적 및 회전균열모델등의 내용을 포함하고 있는 압축장 응력장 이론(CFT)에 근거한 유한요소법이 개발/제시되었다. 또한, 이와 관련하여 CFT가 암시하는 탄젠트 및 세칸트 재료강성이 반복계산해법의 관점에서 정의/논의되었다. 최종적으로 계산상의 효율성 증대 및 최대하중 이후의 거동 포착에 주안점을 두어 초기재료 강성을 채택한 변위증분법 논리 및 빠른 수렴을 위한 Over-Relaxtion방법이 Isoparametric계의 8-Node요소에 포함/유도되었다. 이와 같이하여 제시된 비선형 해석 프로그램 NASCOM은 응력 혼돈지역에 위치하는 콘크리트 평면요소의 하중 지지능력, 탄성범위 이후의 변형 특성, 균열양상 및 보강근의 항복범위등의 예측을 가능하게 하였다. NASCOM의 제한된 검증을 위하여, Cervenka의 판넬 시험결과에 대한 하중지지능력 및 변형이력등을 예측한 결과가 전체적인 의미에서 실험결과와 상응하는 일치를 나타내었다.

  • PDF

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

Interaction analysis of a building frame supported on pile groups

  • Dode, P.A.;Chore, H.S.;Agrawal, D.K.
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.305-318
    • /
    • 2014
  • The study deals with the physical modeling of a typical building frame resting on pile foundation and embedded in cohesive soil mass using complete three-dimensional finite element analysis. Two different pile groups comprising four piles ($2{\times}2$) and nine piles ($3{\times}3$) are considered. Further, three different pile diameters along with the various pile spacings are considered. The elements of the superstructure frame and those of the pile foundation are descretized using twenty-node isoparametric continuum elements. The interface between the pile and pile and soil is idealized using sixteen-node isoparametric surface elements. The current study is an improved version of finite element modeling for the soil elements compared to the one reported in the literature (Chore and Ingle 2008). The soil elements are discretized using eight-, nine- and twelve-node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in the elastic state at all the time. The interaction analysis is carried out using sub-structure approach in the parametric study. The total stress analysis is carried out considering the immediate behaviour of the soil. The effect of various parameters of the pile foundation such as spacing in a group and number piles in a group, along with pile diameter, is evaluated on the response of superstructure. The response includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement in the range of 58 -152% and increase the absolute maximum positive and negative moments in the column in the range of 14-15% and 26-28%, respectively. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and the soil considered in the present study.

Finite Element Analysis of Reinforced Concrete Shear Walls with a Crack under Cyclic Loading

  • Kato, S.;Ohya, M.;Shimaoka, S.;Takayama, M.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.107-116
    • /
    • 2001
  • The present paper investigates the nonlinear behavior of reinforced concrete shear walls with a crank based on a finite element analysis. The loading type is a horizontal cyclic one such as earthquake loads. Experiments of the shear walls with and without cranks, performed previously to see flow the behavior changes depending on the crank, are compared with the results obtained from the finite element analysis. The finite element analysis is based on an isoparametric degenerated shell formulation. The nonlinear constitutive equations fur concrete are modeled adopting the formulation based on a concept of Ring Typed-Lattice Model. The experiments indicate that the shear walls with a crank have low stiffness and relatively low carrying capacity compared with an ordinary plane shear wall without cranks and that they are more ductile, and the tendency is a1so confirmed based on the finite element analysis. Moreover, a good agreement between the experiments and analyses is obtained, accordingly, it is confined that the present numerical analysis scheme based on the Lattice Model is a powerful one to evaluate the behavior of reinforced concrete shear walls with cranks and without cranks.

  • PDF

Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구 (Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate)

  • 김용우;박춘수;민옥기
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

유한요소해의 정확도 조절을 위한 적응해석법 (Adaptive Analysis Methods for the Accuracy Control of Finite Element Solutions)

  • 오형석;이대일;최준형;임장근
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2067-2077
    • /
    • 1996
  • In adaptive finite element analysis, r- and h-methods are generally used on the basis of a discretization error estimator. In this paper, an rh-method is proposed as a new adaptive method which can improve the adaptivity performance by using both of them. This suggested rh-method moves nodal coordinates of initially given model to adjust element discretization errors and thereafter performes the h-method tdo obtain the specified accuracy of finite element solutions. Numerical experiments for various plane problems were performed using 4-noded isoparametric quadrilateral elements. As a result, the rh-method has been shown to be an accurate and efficient adaptive analysis method to obtain as improved solution.

Rational finite element method for plane orthotropic elastic problems

  • Mao, Ling;Yao, Weian;Gao, Qiang;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.923-937
    • /
    • 2014
  • The rational finite element method is different from the standard finite element method, which is constructed using basic solutions of the governing differential equations as interpolation functions in the elements. Therefore, it is superior to the isoparametric approach because of its obvious physical meaning and accuracy; it has successfully been applied to the isotropic elasticity problem. In this paper, the formulation of rational finite elements for plane orthotropic elasticity problems is deduced. This method is formulated directly in the physical domain with full consideration of the requirements of the patch test. Based on the number of element nodes and the interpolation functions, different approaches are applied with complete polynomial interpolation functions. Then, two special stiffness matrixes of elements with four and five nodes are deduced as a representative application. In addition, some typical numerical examples are considered to evaluate the performance of the elements. The numerical results demonstrate that the present method has a high level of accuracy and is an effective technique for solving plane orthotropic elasticity problems.

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.