• Title/Summary/Keyword: Isolation System

Search Result 1,762, Processing Time 0.027 seconds

Seismic Nonlinear Damage Assessment and Retrofit Strategies for Existing Bridges with Isolation System using Retrofit Slate Function (비선형 내진 손상도 평가 및 보강상태함수를 이용한 기존교량의 내진 보강 전략)

  • Cho, Hyo-Nam;Choi, Hyun-Ho;Eom, Won-Seok;Shin, Man-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.179-191
    • /
    • 2002
  • This paper presents a systematic approach to the seismic nonlinear analysis and retrofit strategies for existing bridges with isolation system using retrofit slate function newly proposed in this study. A seismic retrofit scheme using sliding base isolation system was presented to reduce the seismic hazard for bridge structures. In this study, two types of isolation systems such as lead bearings and sliding isolators were used. The behavior of sliding isolators was modeled by a triaxial interaction model. And three types of earthquakes such as El Centro, San Fernando, and the artificial were used as earthquake ground excitations. Seismic response analyses of the bridge before and after retrofit were effectively carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-Bridge. Also, this paper proposes a retrofit state function for easily representing the efficiency of a retrofit scheme.

Single Axis Vibration Isolation System Using Series Active-passive Approach (직렬형 능-수동 제진 방법을 이용한 1축 제진 시스템)

  • Banik, Rahul;Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.176-179
    • /
    • 2005
  • To control the vibration transmitted to the precision instruments from ground has always been of great interest among the researchers. This paper proposes a single axis vibration isolation system which can be used as a module far a table top six axis isolator for highly precise measurement and actuation system. The combined active-passive isolation principle is used for vertical vibration isolation by mounting the instrument on a passively damped isolation system made of Elastomer along with the active stage in series which consists of very stiff piezo actuator. The active stage works in combination with the passive stage for working as a very low frequency vibration attenuator. The active stage is isolated from the payload disturbance through the Passive stage and thus modularity in control is achieved. This made the control algorithm much easier as it does not need to be tuned to specific payload.

  • PDF

Policy evaluation of the rice market isolation system and production adjustment system

  • Dae Young Kwak;Sukho Han
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.629-643
    • /
    • 2023
  • The purpose of this study was to examine the effectiveness and efficiency of a policy by comparing and analyzing the impact of the rice market isolation system and production adjustment system (strategic crops direct payment system that induces the cultivation of other crops instead of rice) on rice supply, rice price, and government's financial expenditure. To achieve this purpose, a rice supply and demand forecasting and policy simulation model was developed in this study using a partial equilibrium model limited to a single item (rice), a dynamic equation model system, and a structural equation system that reflects the casual relationship between variables with economic theory. The rice policy analysis model used a recursive model and not a simultaneous equation model. The policy is distinct from that of previous studies, in which changes in government's policy affected the price of rice during harvest and the lean season before the next harvest, and price changes affected the supply and demand of rice according to the modeling, that is, a more specific policy effect analysis. The analysis showed that the market isolation system increased government's financial expenditure compared to the production adjustment system, suggesting low policy financial efficiency, low policy effectiveness on target, and increased harvest price. In particular, the market isolation system temporarily increased the price during harvest season but decreased the price during the lean season due to an increase in ending stock caused by increased production and government stock. Therefore, a decrease in price during the lean season may decrease annual farm-gate prices, and the reverse seasonal amplitude is expected to intensify.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

Two-Faults Detection and Isolation Using Extended Parity Space Approach

  • Lee, Won-Hee;Kim, Kwang-Hoon;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a new FDI(Fault Detection and Isolation) method, which is called EPSA(Extended Parity Space Approach). This method is particularly suitable for fault detection and isolation of the system with one faulty sensor or two faulty sensors. In the system with two faulty sensors, the fault detection and isolation probability may be decreased when two faults are occurred between the sensors related to the large fault direction angle. Nonetheless, the previously suggested FDI methods to treat the two-faults problem do not consider the effect of the large fault direction angle. In order to solve this problem, this paper analyzes the effect of the large fault direction angle and proposes how to increase the fault detection and isolation probability. For the increase the detection probability, this paper additionally considers the fault type that is not detected because of the cancellation of the fault biases by the large fault direction angle. Also for the increase the isolation probability, this paper suggests the additional isolation procedure in case of two-faults. EPSA helps that the user can know the exact fault situation. The proposed FDI method is verified through Monte Carlo simulation.

Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse

  • Tavakoli, Hamid R.;Naghavi, Fahime;Goltabar, Ali R.
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.639-656
    • /
    • 2015
  • Seismic isolation devices are commonly used to mitigate damages caused by seismic responses of structures. More damages are created due to progressive collapse in structures. Therefore, evaluating the impact of the isolation systems to enhance progressive collapse-resisting capacity is very important. In this study, the effect of lead rubber bearing isolation system to increase the resistance of structures against progressive collapse was evaluated. Concrete moment resisting frames were used in both the fixed and base-isolated model structures. Then, progressive collapse-resisting capacity of frames was investigated using the push down nonlinear static analysis under gravity loads that specified in GSA guideline. Nonlinear dynamic analysis was performed to consider dynamic effects column removal under earthquake. The results of the push down analysis are highly dependent on location of removal column and floor number of buildings. Also, seismic isolation system does not play an effective role in increasing the progressive collapse-resisting capacities of structures under gravity loads. Base isolation helps to localize failures and prevented from spreading it to intact span under seismic loads.

Effectiveness of seismic isolation in a reinforced concrete structure with soft story

  • Hakan Ozturk;Esengul Cavdar;Gokhan Ozdemir
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.405-418
    • /
    • 2023
  • This study focused on the effectiveness of seismic isolation technique in case of a reinforced concrete structure with soft story defined as the stiffness irregularity between adjacent stories. In this context, a seismically isolated 3-story reinforced concrete structure was analyzed by gradually increasing the first story height (3.0, 4.5, and 6.0 m). The seismic isolation system of the structure is assumed to be composed of lead rubber bearings (LRB). In the analyses, isolators were modeled by both deteriorating (temperature-dependent analyses) and non-deteriorating (bounding analyses) hysteretic representations. The deterioration in strength of isolator is due to temperature rise in the lead core during cyclic motion. The ground motion pairs used in bi-directional nonlinear dynamic analyses were selected and scaled according to codified procedures. In the analyses, different isolation periods (Tiso) and characteristic strength to weight ratios (Q/W) were considered in order to determine the sensitivity of structural response to the isolator properties. Response quantities under consideration are floor accelerations, and interstory drift ratios. Analyses results are compared for both hysteretic representations of LRBs. Results are also used to assess the significance of the ratio between the horizontal stiffnesses of soft story and isolation system. It is revealed that seismic isolation is a viable method to reduce structural damage in structures with soft story.

Influence of Building Base-Isolation on Seismic Response of Submerged Internal Systems (건물기초의 절연이 내부수중구조물의 지진응답에 미치는 영향)

  • 신태명
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.125-134
    • /
    • 1996
  • The base-isolation of building, as appeared in many studies, has shown remarkable performance in seismic response attenuation of the internal system as well as the building structure itself. But for the case that the internal system is submerged and hence subject to a considerable hydrodynamic effect, the seismic response of the system due to the base-isolation of building can be greater than the case that they are in air. This paper presents the dynamic analysis of a submerged internal system on base-isolated building to show such an example. The results show that an additional treatment is required to reduce the adverse effects on the seismic response of such a system when the building is base-isolated, and that the system response can be reduced to some extent by an appropriate control of fluid gap between the system and the building structure.

  • PDF

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities (첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.