• 제목/요약/키워드: Isolated word

검색결과 156건 처리시간 0.02초

한국어 고립단어인식을 위한 고속 알고리즘 (Fast Algorithm for Recognition of Korean Isolated Words)

  • 남명우;박규홍;정상국;노승용
    • 한국음향학회지
    • /
    • 제20권1호
    • /
    • pp.50-55
    • /
    • 2001
  • 본 논문에서는 청각모델을 이용하여 음성신호로부터 추출한 특징벡터를 2차원 DCT (discrete cosine transform)방법을 사용하여 가공한 후, 새로운 거리측정 방법에 적용하여 한국어 고립단어 인식 실험을 행하였다. 고립단어 인식은 기존에 많은 방법들이 제안되어졌으나, 본 논문에서 제안한 방법은 고립단어 인식을 위한 특징 파라미터로 2차원 DCT 계수를 사용한 것으로 구현이 간단하며, 간단한 계산식으로 인하여 빠른 인식 시간을 가지는 장점이 있다. 제안한 방식의 타당성 검토를 위하여, 고립단어 인식에서 좋은 인식결과를 나타내는 DTW (Dynamic Time Warping)방법을 사용하여 인식률을 비교하였다[5][6]. 실험결과 제안한 방식은 DTW를 사용한 인식방법에 비하여 화자종속 고립단어 인식에서는 거의 유사한 인식결과를, 화자독립 고립단어 인식에서는 더 높은 인식결과를 얻을 수 있었다. 또한, DTW에 비해 패턴비교를 위한 계산시간에 있어서는 200배 이상의 감소효과를 볼 수 있었다. 제안된 방법은 비교 방법에 비하여 잡음환경에서도 강한 특성을 보였다.

  • PDF

모바일 기기를 위한 음성인식의 사용자 적응형 후처리 (User Adaptive Post-Processing in Speech Recognition for Mobile Devices)

  • 김영진;김은주;김명원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권5호
    • /
    • pp.338-342
    • /
    • 2007
  • 본 논문에서는 모바일 환경에서 고립단어 음성인식을 할 경우 화자종속 방법을 이용하여 성능을 높이는 사용자 적응형 후처리 방법을 제안한다. 이 방법은 인식기의 정확한 인식 결과를 위한 추가적인 처리들로 구성된다. 즉 인식기의 출력과 정확한 최종 결과들 간의 관계를 학습하여 이를 잘못된 인식기의 출력을 수정하는 데에 사용한다. 학습에는 패턴인식에 강인한 다층 퍼셉트론을 사용하며 학습 시간을 고려하여 모델을 세분화하고 동적으로 동작할 수 있도록 구현한다. 이 결과 인식기의 오류에 대해 41%를 수정하는 성과(오류 수정률: 41%)를 보였다.

발화속도 적응적인 한국어 연속음 인식기 (Adaptive Korean Continuous Speech Recognizer to Speech Rate)

  • 김재범;박찬규;한미성;이정현
    • 한국정보처리학회논문지
    • /
    • 제4권6호
    • /
    • pp.1531-1540
    • /
    • 1997
  • 본 논문에서는 발화속도 측정과 이를 통한 보상방법을 통하여 성능 향상된 한국어 연속음 인식 시스템을 제안한다. 연속음 인식은 다양한 조음화 현상과 발화속도의 변화로 인하여 고립단어 인식에 비하여 어렵다. 따라서, 연속음 인식을 위해서는 조음화 현상과 발화속도의 변화를 모델링할 수 있는 방법이 필요하다. 본 논문에서는 발화속도를 포만트의 변화율로서 측정하였고, 이 정보를 이용하여 빠른 발화에서는 상대적으로 많은 특징벡터를 발생시켜 보상을 시도하였다. 또한 조음화 현상을 모델링하기 위하여 한국어의 다이폰 집합을 514개로 정의하였고, 훈련을 위한 음성 DB론느 ETRI의 445 단어 DB를 사용하였다. 이러한 방법을 결합한 한국어 연속음 인식기를 DHMM (Discrete Hidden Markov Model)으로 구현하여 인식률이 향상됨을 보였다.

  • PDF

아파트 단지 내 사이버 커뮤니티 콘텐츠 및 아이템 개발 - 공동체 활성화를 위한 프로그램 중심으로 - (Contents and Item Development for Virtual Communities in Apartment - The Revitalization for Commununities Program -)

  • 박나래;강순주
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2008년 추계학술발표대회 논문집
    • /
    • pp.344-349
    • /
    • 2008
  • When it comes to discussing the natural behaviors of human life, defining the word "community" itself can be extremely crucial. The word "Community" can be defined as a group of interacting human beings sharing an environment. It is also the basic form for "dwelling" which can be explained as a quint essential factor in human life. Compared to the previous traditional society with strong bonding and close chemistry between neighbors, modern society with simple and monolithic apartments brought a literal extinction of what has been called as a 'relationship'. Hence, people started to take this phenomenon as a problematic issue. Also, high-rise apartments made its residents more isolated and individualistic on a growing basis. In order to aid the aggravating symptoms, there has been a wide recognition between the "dwellers" to develop and strengthen their "community". This movement in strengthening the "community" is currently on a full expansion towards the cyber space, riding the tides of a drastic improvement of the Internet. Apartment web sites today not only displays introductory level of information they also provide wider meanings of general lifestyle plus deeper content, which can enhance their community.

  • PDF

HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발 (Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model)

  • 조현수;박민규;이현정;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Diphone 단위 의 hidden Markov model을 이용한 한국어 단어 인식 (Korean Word Recognition Using Diphone- Level Hidden Markov Model)

  • 박현상;은종관;박용규;권오욱
    • 한국음향학회지
    • /
    • 제13권1호
    • /
    • pp.14-23
    • /
    • 1994
  • 본 논문에서는 한국어 음성인식에 적합한 음성 인식 단위에 대해서 연구하였다. 좋은 음성 인식 시스템을 구현하기 위해서는 발음된 음성내의 조음화현상을 처리할 수 있는 인식단위를 선택해야만 한다. 따라서 음소보다 개념적으로 확대된 인식단위가 필요하게 되는데, diphone은 음소간의 전이영역을 modeling하기때문에 좋은 인식 단위가 될 수 있다. Diphone을 인식 단위로 할 경우에 안정적인 음소영역을 diphone사이에 삽입할 수도 있다. 7명의 남성화자가 발음한 74단어로 구성된 고립단어 인식 실험결과 diphone을 2-state HMM으로, 터짐소리 `ㅂ',`ㄷ','ㄱ'와 묵음을 제외한 음소에 대해서 1-state HMM으로 나타냈을 때 가장 높은 인식률을 보였다. 이때 드물게 발생하는 diphone들을 하나의 단위로 merging했을 때 인식률이 $93.98\%$에서 $96.29\%$로 향상되었다. 또한 merging된 diphone과 제안한 국소보간법 (local interpolation technique)을 사용함으로써 $97.22\%$까지 인식률이 향상되었다.

  • PDF

음성인식을 위한 혼돈시스템 특성기반의 종단탐색 기법 (A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System)

  • 장한;정길도
    • 전자공학회논문지SC
    • /
    • 제46권5호
    • /
    • pp.8-14
    • /
    • 2009
  • 음성 인식 연구에서 잡음이 있는 상태에서 음성 발음상의 시작점과 종단점을 찾는 것은 매우 중요하다. 기존 음성인식 시스템의 오차는 대부분 참고템플릿의 시작점과 종단점을 왜란이나 잡음으로 인해 자동적으로 찾지 못했을 경우 발생한다. 따라서 음성 신호상에서 필요 없는 부분을 제거할 수 있는 방법이 필요하다. 기존의 음성 종단점을 찾는 방법으로는 시간도메인 측정방법, 미세시간 에너지 분석, 영교차율 방법이 있다. 위의 방법들은 저주파 신호 노이즈의 영향에 정밀성을 보장을 못한다. 따라서 본 논문에서는 시간영역상에서 리야프노프 지수를 이용한 종단점 인식 알고리즘을 제안하였다. 기존의 방법들과의 비교를 통해 제안한 방법의 성능 우수성을 보였으며, 시뮬레이션 및 실험을 통해 잡음환경에서도 음성종단 인식이 가능함을 보였다.

k-clustering 부공간 기법과 판별 공통벡터를 이용한 고립단어 인식 (Isolated Word Recognition Using k-clustering Subspace Method and Discriminant Common Vector)

  • 남명우
    • 대한전자공학회논문지TE
    • /
    • 제42권1호
    • /
    • pp.13-20
    • /
    • 2005
  • 본 논문에서는 M. Bilginer 등이 제안한 CVEM(common vector extraction method)을 이용하여 한국어 화자독립 고립단어 인식실험을 수행하였다. CVEM은 학습용 음성신호들로부터 공통된 특징의 추출이 비교적 간단하고, 많은 계산 량을 필요로 하지 않을 뿐만 아니라 높은 인식 결과를 보여주는 알고리즘이다. 그러나 학습 음성의 개수를 일정 한도 이상으로 늘릴 수 없고, 추출된 공통벡터들 간의 구별정보(discriminant information)를 가지고 있지 않다는 문제점을 가지고 있다. 임의의 음성군으로부터 최적의 공통벡터를 추출하기 위해서는 다양한 음성들을 학습에 사용해야만 하는데 CVEM은 학습용 음성 개수에 제한이 있으므로 지속적인 인식률 향상을 기대하기 어렵다. 또한 공통벡터들 간의 구별정보 부재는 단어 결정에 있어서 치명적인 오류의 원인이 될 수 있다. 본 논문에서는 CVEM이 가지고 있는 이러한 문제점들을 보완하면서 인식률을 향상시킬 수 있는 새로운 방법인 KSCM(k-clustering subspace method)과 DCVEM(discriminant common vector extraction method)을 제안하였고 이 방법을 사용하여 고립단어를 인식하였다. 그리고 제안한 방법들의 우수성을 입증하기 위해 ETRI에서 제작한 음성 데이터베이스를 사용, 다양한 방법으로 실험을 수행하였다. 실험 결과 기존 방법의 문제점들을 모두 극복할 수 있었을 뿐 아니라 기존에 비해 계산량의 큰 증가 없이 향상된 결과를 얻을 수 있었다.

음절을 기반으로한 한국어 음성인식 (Korean Speech Recognition Based on Syllable)

  • 이영호;정홍
    • 전자공학회논문지B
    • /
    • 제31B권1호
    • /
    • pp.11-22
    • /
    • 1994
  • For the conventional systme based on word, it is very difficult to enlarge the number of vocabulary. To cope with this problem, we must use more fundamental units of speech. For example, syllables and phonemes are such units, Korean speech consists of initial consonants, middle vowels and final consonants and has characteristic that we can obtain syllables from speech easily. In this paper, we show a speech recognition system with the advantage of the syllable characteristics peculiar to the Korean speech. The algorithm of recognition system is the Time Delay Neural Network. To recognize many recognition units, system consists of initial consonants, middle vowels, and final consonants recognition neural network. At first, our system recognizes initial consonants, middle vowels and final consonants. Then using this results, system recognizes isolated words. Through experiments, we got 85.12% recognition rate for 2735 data of initial consonants, 86.95% recognition rate for 3110 data of middle vowels, and 90.58% recognition rate for 1615 data of final consonants. And we got 71.2% recognition rate for 250 data of isolated words.

  • PDF

신경회로망을 이용한 제약 없이 쓰여진 필기체 문자열로부터 단어 분리 방법 (Segmentation of Words from the Lines of Unconstrained Handwritten Text using Neural Networks)

  • 김경환
    • 전자공학회논문지C
    • /
    • 제36C권7호
    • /
    • pp.27-35
    • /
    • 1999
  • 필기서술의 인식과 관련된 연구는 인식대상 영상이 바르게 분리된 인식단위를 포함한다는 전제로 진행되어 왔다. 그러나 실제적인 필기인식 시스템의 설계에 있어서, 다양한 필기방식으로 인해, 인식단위로의 분리가 선결되어야 할 문제이다. 본 논문에서는 제한없이 쓰여진 필기 문자열로부터 인식의 도움없이 독립된 단어를 분리하는 방법을 제안한다. 구성요소간 물리적인 거리에 의존하는 종래의 방법과 달리, 필기서술 자체로부터 필기자의 띄어쓰기와 관련된 특징들을 적극적으로 추출하고 이를 신경회로망을 사용하여 해석한다. 띄어쓰기와 관련된 정보는 문자 분리과정을 통해 분리된 문자 세그먼트의 높이와 세그먼트 중심선 사이의 간격들을 정규화하여 구한다. 연결요소간의 거리에 기반한 방법들과의 비교실험을 통해 제한한 방법의 유용성을 입증하였다.

  • PDF