• Title/Summary/Keyword: Isolated perfused rat heart

Search Result 62, Processing Time 0.015 seconds

Effect of Ischemic Preconditioning on Myocardial Protection - A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 - 적출 쥐 심장에서 상온에서의 심근허혈과 중등도 저체온하에서 심근정지액 사용 시의 비교 연구 -)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.5
    • /
    • pp.242-254
    • /
    • 2003
  • Background: Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of $25^{\circ}C$ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups All hearts were perfused at 37$^{\circ}C$ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained, Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37$^{\circ}C$, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4$^{\circ}C$) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at $25^{\circ}C$, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minuts (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37$^{\circ}C$ normothermic ischemia and 30 minutes of reperfusion (n=6) Group 4 soloed as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, Improving the LVSP, LVEDP, RPP, and LV dp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.

Protective Effects of Adenosine-enriched Cardioplegic Solution in Ischemic Myocardium (Adenosine을 함유한 심정지액의 심근보호 효과)

  • 이호철;정태은
    • Journal of Chest Surgery
    • /
    • v.29 no.2
    • /
    • pp.199-207
    • /
    • 1996
  • Ischemic myocardial damage is inevitable to cardiac surgery. Myocardial damage after initiation of reperfusion through the coronary arteries is one of the most important determinants of a successful surgery. Adenosine is a potent vasodilator, and is also known to induce rapid cardioplegic arrest by its property of antagonizing cardiac calcium channels and activating the potassium channel. Thus, we initiated this study with adenosine to improve postischemic recovery in the isolated rat heart. We tested the hypothesis that adenosine could be more effective than potassium in inducing rapid cardiac arrest and enhancing postischemlc hemodynamic recovery. Isolated rat hearts, connected to the Langendorff appratus, were perfused with Krebs-Henseleit buffer and all hearts were subjected to arrest for 60 minutes. Three groups of hearts were studied according to the composition of cardioplegic solutions : Group A (n=10), adenosine 10mmo1/L+potassium free modified St. Thomas cardioplegia : Group B (n=10), adenosine 400mo1/L+S1. Thomas cardioplegia:Group C(control, n=10), St. Thomas cardioplegia. Adenosine-treated groups (group A & B) resulted in more rapid cardiac arrest than control group (C) (p< 0.01). There was greater improvement in recovery of coronary blood flow at 20 and 30 minutes of reperfusion in group A and at 20 minutes in group B when compared with control group(p<0.01). Recovery of systolic blood pressure at 10 minutes after reperfusion in group A and B was significantly superior to that in group C (p<0.01). Recovery of dp/dt at 10 minute after reperfusion in group A was also significantly superior to group C (p<0.05). Group A and B showed better recovery rates than control group in aortic blood flow, cardiac output, and heart rate, but there were no statistical differences. CPK levels of coronary flow in group A were significantly low (p< 0.01). We concluded that adenosine-enriched cardioplegic solutions have better effects on rapid cardiac arrest and postischemic recovery when compared with potassium cardioplegia.

  • PDF