• Title/Summary/Keyword: Isolated node

Search Result 92, Processing Time 0.027 seconds

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

The Gradient Model of the Rabbit Sinoatrial Node

  • Dobrzynski, H.;Lei, M.;Jones, S.A.;Lancaster, M.K.;Boyett, M.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.173-181
    • /
    • 2002
  • The sinoatrial (SA) node is a complex and inhomogeneous tissue in terms of cell morphology and electrical activity. There are two models of the cellular organisation of the sinoatrial node: the gradient and mosaic models. According to the gradient model there is a gradual transition in morphology and electrical properties of SA node cells from the centre to the periphery of the SA node. In the mosaic model, there is a variable mix of atrial and sinoatrial node cells from the centre to the periphery. This review focuses on the cellular organisation of the rabbit sinoatrial node in terms of the expression of connexin (Cx40, Cx43 and Cx45), L-type $Ca^{2+}$ channel and $Na^+-Ca^{2+}$ exchanger proteins. These immunocytochemical data, together with morphological and electrophysiological data, obtained from the intact sinoatrial node and isolated sinoatrial node cells support the gradient model of the cellular organisation of the SA node. The complex organisation of the sinoatrial node is important for the normal functioning of the sinoatrial node: (i) it allows the sinoatrial node to drive the surrounding hyperpolarized atrial muscle without being suppressed by it; (ii) it helps the pacemaker activity of the sinoatrial node continue under a wide range of physiological and pathophysiological conditions; (iii) it helps protect the sinoatrial node from reentrant arrhythmias.

Addressing Concurrency Design for HealthCare Web Service Gateway in Remote Healthcare Monitoring System

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2016
  • With the help of a small wearable device, patients reside in an isolated village need constant monitoring which may increase access to care and decrease healthcare delivery cost. As the number of patients' requests increases in simultaneously manner, the web service gateway located in the village hall encounters limitations for performing them successfully and concurrently. The gateway based RESTful technology responsible for handling patients' requests attests an internet latency in case a large number of them submit toward the gateway increases. In this paper, we propose the design tasks of the web service gateway for handling concurrency events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with support for messages passing between concurrent objects. We also investigate the performance of event-driven architecture for building web service gateway using node.js. The experiments results show that server-side JavaScript with Node.js and MongoDB as database is 40% faster than Apache Sling. With Node.js developers can build a high-performance, asynchronous, event-driven healthcare hub server to handle an increasing number of concurrent connections for Remote Healthcare Monitoring System in an isolated village with no access to local medical care.

Phenolic Compounds from the Node of Lotus Rhizome (Nelumbo nucifera Gaertn) (우절의 페놀성 화합물의 분리 및 동정)

  • 김준식;조수민;김지헌;권영민;이민원
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.599-603
    • /
    • 2001
  • The node of lotus rhizome (Nelumbo nucifera, Nymphaeaceae) have been used as a traditional medicine for the remedy of hemorrhage, blood stagnancy and thirstiness. To investigate phenolic compound from the node of Nelumbo nucifera, phytochemical isolation and structure elucidation were conducted. Four phenolic compounds were isolated from aqueous methanolic extract and the structure of these compounds were identised as (+)-catechin (1), (+)-gallocatechin (2), (+)-gallocatechin (4u-8)-catechin (3) and scolpoletin (4) respectively by the analysis of spectroscopic evidences and comparisions with the data of authentic samples.

  • PDF

Location-based Support Multi-path Multi-rate Routing for Grid Mesh Networks

  • Hieu, Cao Trong;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1264-1266
    • /
    • 2009
  • We introduce a location-based routing model applied for grid backbone nodes in wireless mesh network. The number of paths with nearest distance between two nodes is calculated and used as key parameter to execute routing algorithm. Node will increase the transmission range that makes a trade off with data rate to reach its neighbors when node itself is isolated. The routing model is lightweight and oriented thanks to the simple but efficient routing algorithm.

Seismic Response Evaluation of Seismically Isolated Nuclear Power Plant Structure Subjected to Gyeong-Ju Earthquake (면진된 원자력발전소 구조물의 경주지진 응답평가)

  • Kim, Gwang-Jeon;Yang, Kwang-Kyu;Kim, Byeong-Su;Kim, Hyeon-Jeong;Yun, Su-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.453-460
    • /
    • 2016
  • The Gyeong-Ju earthquake in the magnitude of 5.8 on the Richter scaleoccurred in September 12, 2016. Because there are many nuclear power plants (NPP) near the epicenter of the Gyeong-Ju earthquake, the seismic stability of nuclear power plants is becoming a social problem. In order to evaluate the safety of seismically isolated NPP, the seismic response of a NPP subjected to the Gyeong-Ju earthquake was compared with those of 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum (NSDS). A 2-node model and a simple beam-stick model were used for the seismic analysis of seismically isolated NPP structures. Using 2-node model, the effect of internal temperature rise, decrease of shear stiffness, increase of lateral displacement and decrease of vertical stiffness according to nonlinear behavior of lead-rubber bearing (LRB) were evaluated. The displacement response, the acceleration response, and the shear force response of the seismically isolated nuclear containment structure were evaluated using the simple beam-stick model. It can be observed that the seismic responses of the isolated nuclear structure subjected to Gyeong-Ju earthquake is significantly less than those to the artificial earthquakes corresponding to NSDS.

Inhibitory action of adenosine on sinus rate in isolated rabbit SA node (토끼 동방결절 박동수에 대한 아데노신의 작용)

  • Chae, Hurn;Suh, Kyung-Phlill;Kim, Ki-Whan
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.199-212
    • /
    • 1983
  • The inhibition/influences of adenine compounds on the heart have been described repeatedly by many investigators, since the first report by Druny and Szent-Gyorgyi [1929]. These studies have shown that adenosine and adenine nucleotides have an over-all effect similar to that of acetylcholine [ACh] by slowing and weakening the heartbeat. The basic cellular and membrane events underlying the inhibitory action of adenosine on sinus rate, however, are not well understood. Furthermore, the physiological role of adenosine in regulation of the heartbeat remains still to be elucidated. Therefore, this study was undertaken in order to examine the response of rabbit SA node to adenosine and to compare the response to that of ACh. Isolated SA node preparation, whole atrial pair, or left atrlal strip was used in each experiment. Action potentials of SA node were recorded through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of 30-50 M. All experiments were performed in a bicarbonate-buffered Tyrode solution which was aerated with 3% $CO_2-97%$ $O_2$ gas mixture and kept at $35^{\circ}C$. Spontaneous firing rate of SA node at 35C [Mean + SEM, n=16] was 154 + 3.3 beats/min. The parameters of action potentials were: maximum astolic potential [MDP], -731.7mV: overshoot [OS], 9 + 1.4mV; slope of pacemaker potential [SPP], 94 3.0mV/sec.Adenosine suppressed the firing rate of SA node in a dose dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was potentiated in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine [2mg/l] and propranolol [$5{\times}10^{-6}M$]. ACh [$10^{-6}M$] responses on action potential were similar to those of adenosine by increasing MDP and decreasing SPP. These effects of ACh disappeared by pretreatment of atropine [2mg/1]. Inhibition/effects of adenosine and ACh on sinus rate were enhanced synergistically with the simultaneous administration of adenosine and ACh. Marked decrease of overshoot potential was the most prominent feature on action potential. Dipyridamole [DPM], which is known to block the adenosine transport across cell membrane, definitely potentiated the action of adenosine . Adenosine suppressed the sinus rate and atrial contractility in the same dosage range, even in the reserpinized preparation. Above` results suggest that adenosine suppresses pacemaker activity, like ACh, by acting directly on the membrane of SA node, increasing MDP and decreasing SPP.

  • PDF

Effect of Glycine on the Action Potential of the Atrial Muscle and Sinus Node Cells of the Rabbit Heart (Glycine에 의한 가토심방근 및 동방결절세포의 활동전압의 변동)

  • Choe, Kyung-Hoon;Kim, Jin-Hyuk;Koh, Sang-Don;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.219-230
    • /
    • 1988
  • The effect of glycine, structurally the most simple amino acid was investigated on the electrophysiological characteristics of the isolated superfused atrial muscle and sinus node cells of the rabbit heart. Superfusion of the sinus node cell with glycine solution (3, 5 and 8 mM) produced concentration-dependent increments of OS (overshoot potential) and MDP (maximum diastolic potential). Generally action potential amplitude increased as a result of greater increment of OS than that of MDP. The changes in action potential of the sinus node cell peaked in $7{\sim}10{\;}minutes$ after onset of superfusioin. On the contrary to the response to intravenously administered glycine, the rate of spontaneous firing of sinus node cell was invariably increased following superfusion with glycine. Action potential duration manifested as $APD_{60}$ (time to 60% repolarization) was significantly shortened by glycine. And the electrophysiological effects of glycine on the atrial muscle cell were similar to that on the sinus node cells. The results of present study suggest that glycine can exert direct effects on the atrial muscle and sinus node cells of the rabbit heart.

  • PDF

Effect of Ammonia on the Action Potential of the Atrial Muscle and Sinus Node Cells of the Rabbit Heart (암모니아가 가토심방근 및 동방결절세포의 활동전압에 미치는 효과)

  • Cho, Yong-Soo;Kang, Sok-Han;Kim, Jin-Hyuk;Koh, Sang-Don;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.339-350
    • /
    • 1989
  • Electrophysiological effects of ammonia was studied in the isolated superfused sinus node and atrial muscle cells of the rabbit heart. No significant changes were observed in the overshoot potential (05), maximum diastolic potential (MDP), and action potential amplitude (APA) of the sinus node cells following superfusion with 3.0 mM ammonia, fifty times upper limit of the normal human plasma level. However the action potential duration (APD) of sinus node cells were significantly prolonged after superfusion with 0.6 mM ammonia for 20 min or with 1.2 and 3.0 mM ammonia for 5 minutes. Ammonia in all the concentrations tested decreased the rate of spontaneous firing (RSF) from the sinus node cells. After superfusion of sinus node cells with 0.3 mM ammonia for 20 min, the RSF significantly decreased from 20 min to 25 min after onset of superfusion while a significant decrement in the RSF was observed from 7 min to 30 min following superfusion with 3.0 mM ammonia for S min. On the other hand, the effects of ammonia on the action potential of the rabbit atrial muscle cell were much similar to those on pacemaker cells except that the atrial cell was generally less sensitive to ammonia. The results suggest that ammonia may cause changes in the action potential of the rabbit cardiac cells by the direct action, and that the cardiac effects of ammonia are generally opposite to those of glycine.

  • PDF

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.