• Title/Summary/Keyword: Isolated building

Search Result 231, Processing Time 0.023 seconds

E-Isolation : High-performance Dynamic Testing Installation for Seismic Isolation Bearings and Damping Devices

  • Yoshikazu Takahashi;Toru Takeuchi;Shoichi Kishiki;Yozo Shinozaki;Masako Yoneda;Koichi Kajiwara;Akira Wada
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.93-105
    • /
    • 2023
  • Seismic isolation and vibration control techniques have been developed and put into practical use by challenging researchers and engineers worldwide since the latter half of the 20th century, and after more than 40 years, they are now used in thousands of buildings, private residences, highways in many seismic areas in the world. Seismic isolation and vibration control structures can keep the structures undamaged even in a major earthquake and realize continuous occupancy. This performance has come to be recognized not only by engineers but also by ordinary people, becoming indispensable for the formation of a resilient society. However, the dynamic characteristics of seismically isolated bearings, the key elements, are highly dependent on the size effect and rate-of-loading, especially under extreme loading conditions. Therefore, confirming the actual properties and performance of these bearings with full-scale specimens under prescribed dynamic loading protocols is essential. The number of testing facilities with such capacity is still limited and even though the existing labs in the US, China, Taiwan, Italy, etc. are conducting these tests, their dynamic loading test setups are subjected to friction generated by the large vertical loads and inertial force of the heavy table which affect the accuracy of measured forces. To solve this problem, the authors have proposed a direct reaction force measuring system that can eliminate the effects of friction and inertia forces, and a seismic isolation testing facility with the proposed system (E-isolation) will be completed on March 2023 in Japan. This test facility is designed to conduct not only dynamic loading tests of seismic isolation bearings and dampers but also to perform hybrid simulations of seismically isolated structures. In this paper, design details and the realization of this system into an actual dynamic testing facility are presented and the outcomes are discussed.

Classification of Flow Regimes in Urban Street Canyons Using a CFD Model (CFD 모형을 이용한 도시 도로 협곡에서의 흐름 체계 분류)

  • Kim, Jae-Jin;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.525-535
    • /
    • 2005
  • Using a three-dimensional computational fluid dynamics (CFD) model with the $k-{\varepsilon}$ turbulence closure scheme based on the renormalization group theory, flow regimes in urban street canyons are classified according to the building and street aspect ratios. The transition between skimming flow (SF) and wake interference flow (WIF) is determined with the size of double-eddy circulation generated behind the upwind building. The transition between WIF and isolated roughness flow (IRF) is determined with the flow reattachment distance from the upwind building. The critical aspect ratios at which the flow transition occurs are found and compared with those in previous studies. The results show that the flow-regime classification method used in this study is quite reasonable and that the values of the critical aspect ratios are generally consistent with those in fluid experiments or large-eddy simulation. The regression equation describing a relation between the building and street aspect ratios at the flow-regime transition is presented.

Numerical method study of how buildings affect the flow characteristics of an urban canopy

  • Zhang, Ning;Jiang, Weimei;Hu, Fei
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.159-172
    • /
    • 2004
  • The study of how buildings affect wind flow is an important part of the research being conducted on urban climate and urban air quality. NJU-UCFM, a standard $k-{\varepsilon}$ turbulence closure model, is presented and is used to simulate how the following affect wind flow characteristics: (1) an isolated building, (2) urban canyons, (3) an irregular shaped building cluster, and (4) a real urban neighborhood. The numerical results are compared with previous researchers' results and with wind tunnel experiment results. It is demonstrated that the geometries and the distribution of urban buildings affect airflow greatly, and some examples of this include a changing of the vortices behind buildings and a "channeling effect". Although the mean air flows are well simulated by the standard $k-{\varepsilon}$ models, it is important to pay attention to certain discrepancies when results from the standard $k-{\varepsilon}$ models are used in design or policy decisions: The standard $k-{\varepsilon}$ model may overestimate the turbulence energy near the frontal side of buildings, may underestimate the range of high turbulence energy in urban areas, and may omit some important information (such as the reverse air flows above the building roofs). In ideal inflow conditions, the effects of the heights of buildings may be underestimated, when compared with field observations.

Complex Power: An Analytical Approach to Measuring the Degree of Urbanity of Urban Building Complexes

  • Xu, Shuchen;Ye, Yu;Xu, Leiqing
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.165-175
    • /
    • 2017
  • The importance of designing urban building complexes so that they obtain 'urban' power, rather than become isolated from the surrounding urban context, has been well recognized by both researchers and practitioners. Nevertheless, most current discussions are made from architects' personal experiences and intuition, and lack a quantitative understanding, to which obstacles include an in-depth exploration of the 'urban' power between building complexes and the urban environment. This paper attempts to measure this feature of 'urban', i.e., 'urbanity,' through a new analytical approach derived from the opendata environment. Three measurements that can be easily collected though the Google Maps API and Open Street Map are applied herein to evaluate high or low values of urbanity. Specifically, these are 'metric depth', i.e., the scale of extended public space, 'development density', i.e., density and distribution of point of interests (POIs), and 'type diversity', i.e., diversity of different commercial types. Six cases located in Japan, China and Hong Kong respectively are ranked based on this analytical approach and compared with each other. It shows that Japanese cases, i.e., Osaka Station City and Namba Parks, Osaka, obtained clearly higher values than cases in Shanghai and Hong Kong. On one hand, the insight generated from measuring and explaining 'urban' power would help to assist better implementation of this feature in the design of urban building complexes. On the other hand, this analytical approach can be easily extended to achieve a large-scale measurement and comparison among different urban building complexes, which is also helpful for design practitioners.

Temperature distribution in a full-scale steel framed building subject to a natural fire

  • Wald, Frantisek;Chladna, Magdalena;Moore, David;Santiago, Aldina;Lennon, Tom
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.159-182
    • /
    • 2006
  • Current fire design codes for determining the temperature within the structural elements that form part of a complete building are based on isolated member tests subjected to the standard fire. However, the standard time-temperature response bears little relation to real fires and doesn't include the effects of differing ventilation conditions or the influence of the thermal properties of compartment linings. The degree to which temperature uniformity is present in real compartments is not addressed and direct flame impingement may also have an influence, which is not considered. It is clear that the complex thermal environmental that occurs within a real building subject to a natural fire can only be addressed using realistic full-scale tests. To study global structural and thermal behaviour, a research project was conducted on the eight storey steel frame building at the Building Research Establishment's Cardington laboratory. The fire compartment was 11 m long by 7 m wide. A fire load of $40kg/m^2$ was applied together with 100% of the permanent actions and variable permanent actions and 56% of live actions. This paper summarises the experimental programme and presents the time-temperature development in the fire compartment and in the main supporting structural elements. Comparisons are also made between the test results and the temperatures predicted by the structural fire Eurocodes.

Characterization of Two Urease-Producing and Calcifying Bacillus spp. Isolated from Cement

  • Achal, Varenyam;Mukherjee, Abhijit;Reddy, M. Sudhakara
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1571-1576
    • /
    • 2010
  • Two bacterial strains designated as CT2 and CT5 were isolated from highly alkaline cement samples using the enrichment culture technique. On the basis of various physiological tests and 16S rRNA sequence analysis, the bacteria were identified as Bacillus species. The urease production was 575.87 U/ml and 670.71 U/ml for CT2 and CT5, respectively. Calcite constituted 27.6% and 31% of the total weight of sand samples plugged by CT2 and CT5, respectively. Scanning electron micrography analysis revealed the direct involvement of these isolates in calcite precipitation. This is the first report of the isolation and identification of Bacillus species from cement. Based on the ability of these bacteria to tolerate the extreme environment of cement, they have potential to be used in remediating the cracks and fissures in various building or concrete structures.

Study on Seismic Responses for Base Isolated Structure Using Linear 2 DOF System and Its Application for NPP (선형 2자유도계를 이용한 면진구조물의 지진응답 연구 및 원자력발전소 적용)

  • Yoo, Bong;Lee, Jae-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.225-232
    • /
    • 1997
  • A study of effects of design parameters on the seismic responses of base isolated structure is performed to reduce the seismic responses using a linear tw0-degree of freedom system and a lumped-mass model of a nuclear power p;ant(NPP). From the simplified 2 DOF system the optimal isolation frequency being less than 1/10th of the fundamental frequency of superstructure is obtained, and the isolator damping minimizing the peak acceleration depends on superstructure frequency. From the time history analyses for lumped mass model of NPP the optimal damping is calculated as 40% in containment building and 65% in reactor internal structure. Similar results are obtained in 2 DOF system

  • PDF

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.