• Title/Summary/Keyword: Isogrid

Search Result 8, Processing Time 0.022 seconds

Parameter Study of Buckling Behavior for Isogrid Structure (등방성격자 구조의 좌굴거동에 대한 매개변수 분석)

  • Kang, Kyunghan;Kim, Yongha;Park, Jinho;Kim, Hyunduk;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.8-14
    • /
    • 2013
  • When launch vehicles are manufactured, one of the key points is a design of lightweight structure for reducing costs. Isogrid structure was designed to solve this topic, and many researches were carried out about buckling load because compression load is mainly applied to them. Recently, many studies are also being carried out about FEM model geometry of isogrid structure. The reason is that isogrid structure depends on size of ribs so it is difficult to modify about small changes in rib pattern. In this study, 1/8 model of cylindrical isogrid structure model was developed to analyze buckling behavior. Through parameter study, buckling analysis were performed to analyze buckling load and buckling mode depending on size of ribs.

Buckling Test and Non-linear Analysis of Aluminium Isogrid Panel (알루미늄 lsogrid 패널의 좌굴시험 및 비선형 해석)

  • Yoo, Joon-Tae;Lee, Jong-Woong;Yoon, Jong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2005
  • There are many methods to reinforce the cylindrical structure for light weight design like skin-stringer and semi-monocoque. Isogrid is one of the reinforced structures to improve buckling load. Isogrid has many advantages for complex load case, internal pressure and concentrated load.In this paper, compressive buckling test and non-linear FE analysis of the isogrid panel are described. Diameter of panel is 2.4m and thickness of plate is 11.43mm. The angle which the panel accomplish is about 70 degrees and, its height is about 660mm. Local buckling, global buckling and variation of stiffness after local buckling were observed during buckling test of the panel. MSC/MARC is used for non-linear FE analysis. When analysis, initial imperfection of panel which occurred during plastic forming is considered. The results of analysis for buckling mode and buckling load have good agreements with test.

Postbuckling Analyses and Derivations of Shell Knockdown Factors for Isogrid-Stiffened Cylinders Under Compressive Force and Internal Pressure (압축력과 내부 압력을 동시에 받는 등방성 격자 원통 구조의 후좌굴 해석 및 좌굴 Knockdown factor의 도출)

  • Kim, Han-Il;Sim, Chang-Hoon;Park, Jae-Sang;Kim, Do-Young;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.653-661
    • /
    • 2020
  • This study derives numerically the shell Knockdown factors for the isogrid-stiffened cylinders of space launch vehicles when the axially compressive force and internal pressure are applied simultaneously. A commercial nonlinear finite element analysis software, ABAQUS, is used for the present work. Nonlinear postbuckling analyses are conducted to calculate the global buckling loads of a cylinder without and with the internal pressure. The shell Knockdown factor is numerically derived using the predicted global buckling loads without and with the geometrically initial imperfection of a cylinder. When the internal pressure of 500 kPa and compressive force are applied to the cylinder, the global buckling load and Knockdown factor increases by 304% and 53%, respectively, as compared to the results without the internal pressure.

Development of Transformable Reflective Telescope Kit Using Aluminum Profile and Isogrid Struture

  • Lee, Sumin;Park, Woojin;Lee, Sunwoo;Han, Jimin;Ann, Hojae;Ji, Tae Geun;Kim, Dohoon;Kim, Ilhoon;Kim, Junghyun;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2021
  • 본 발표에서는 Transformable Reflective Telescope(TRT kit)의 새로운 버전을 소개한다. TRT kit는 기본형인 뉴턴식 반사망원경에서 부경 교체를 통해 카세그레인식, 그레고리식으로 간단하게 변형 할 수 있는 광학 실험장치이다. 본 장치는 주로 망원경 교육이나 광학계 개발에 필요한 실험에 활용된다. 모듈화 설계를 통해서 여러 종류의 광학계를 쉽게 탈착하여 다양한 실험을 할 수 있다. 광기계부는 정밀하게 제작된 알루미늄 프로파일과 Isogrid구조를 채택하여 경량화 구조로 설계되었다. 이러한 경량부품들을 통해 이전 버전보다 50~70%의 중량 감소율을 달성하였다. 유한요소해석 결과 경량화된 뉴턴식 TRT kit는 이전 버전과 비교해서 자체 하중에 의한 최대 구조 변형이 0.11mm에서 0.023mm로 감소하였다. 부경 지지대 설계에는 자체 하중으로 인한 변형을 최소화하기 위해 트러스 (Truss) 구조가 도입되었다. 부경부의 자체 하중으로 인한 변형은 기존의 80㎛에서 21㎛로 감소하였다. 또한, 십자 레이저 정렬 장치가 추가되어 뉴턴식과 카세그레인식에서 공차 1.5' 이내로 광학계 정렬이 가능하다.

  • PDF

DEVELOPMENT OF LIGHTWEIGHT OPTICAL TELESCOPE KIT USING ALUMINUM PROFILE AND ISOGRID STRUCTURE

  • Park, Woojin;Lee, Sunwoo;Han, Jimin;Ahn, Hojae;Ji, Tae-Geun;Kim, Changgon;Kim, Dohoon;Lee, Sumin;Kim, Young-Jae;Kim, Geon-Hee;Kim, Junghyun;Kim, Ilhoon;Pak, Soojong
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • We introduce the Transformable Reflective Telescope (TRT) kit that applies an aluminum profile as a base plate for precise, stable, and lightweight optical system. It has been utilized for optical surface measurements, developing alignment and baffle systems, observing celestial objects, and various educational purposes through Research & Education projects. We upgraded the TRT kit using the aluminum profile and truss and isogrid structures for a high-end optical test device that can be used for prototyping of precision telescopes or satellite optical systems. Thanks to the substantial aluminum profile and lightweight design, mechanical deformation by self-weight is reduced to maximum 67.5 ㎛, which is an acceptable misalignment error compared to its tolerance limits. From the analysis results of non-linear vibration simulations, we have verified that the kit survives in harsh vibration environments. The primary mirror and secondary mirror modules are precisely aligned within 50 ㎛ positioning error using the high accuracy surface finished aluminum profile and optomechanical parts. The cross laser module helps to align the secondary mirror to fine-tune the optical system. The TRT kit with the precision aluminum mirror guarantees high quality optical performance of 5.53 ㎛ Full Width at Half Maximum (FWHM) at the field center.

Topology Optimization of Inner-Wall Stiffener for Critical Buckling Loads of Cylindrical Containers (임계좌굴하중을 고려한 원통형 용기 내부 벽면 보강격자의 위상최적설계)

  • Youn Sung-Kie;Yeon Jeoung-Heum;Chang Su-Young;Yoo loon-Tae;Seo Yu-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.503-510
    • /
    • 2005
  • In this paper, the topology optimization of inner-wall stiffener of cylindrical containers for the use as a rocket fuel tank is presented. Such structures for space mission should have high stiffness against the buck]ins while their weight should be maintained low from the viewpoint of cost and performance. Therefore, in the present work the reciprocal of critical buckling load is adopted as an objective function and the total mass of stiffener is constrained to a prescribed value. Due to the restriction of computational resources a section of cylindrical container is topologically optimized and this result is repeated to obtain the full design. Also, for manufacturability the concept of periodic topology pattern in design domain is newly introduced. In the numerical examples, the results by the proposed approach are investigated and compared with those of isogrid design.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.