• Title/Summary/Keyword: Isogeometric Analysis (IGA)

Search Result 15, Processing Time 0.023 seconds

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

Study on Application of Isogeometric Analysis Method for the Dynamic Behavior Using a Reduced Order Modeling (축소 모델의 동적 거동 해석을 위한 등기하해석법 적용에 대한 연구)

  • Kim, Min-Geun;Kim, Soo Min;Lee, Geun-Ho;Lee, Hanmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.275-282
    • /
    • 2018
  • Using isogeometric analysis(IGA) gives more accurate results for higher order mode in eigenvalue problem than using the finite element method(FEM). This is because the FEM has $C^0$ continuity between elements, whereas IGA guarantee $C^{P-1}$ between elements for p-th order basis functions. In this paper, a mode based reduced model is constructed by using IGA and dynamic behavior analysis is performed using this advantage. Craig-Bampton(CB) method is applied to construct the reduced model. Several numerical examples were performed to compare the eigenvalue analysis results for various order of element basis function by applying the IGA and FEM to simple rod analysis. We have confirmed that numerical error increases in the higher order mode as the continuity between elements decreases in the IGA by allowing internal knots multiplicity. The accuracy of the solution can be improved by using the IGA with high inter-element continuity when high-frequency external force acts on the reduced model for dynamic behavior analysis.

Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST

  • Farzam, Amir;Hassani, Behrooz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.69-93
    • /
    • 2022
  • Reduced graphene oxide (rGO) is one of the derivatives of graphene, which has drawn some experimental research interests in recent years however, numerical research studying the mechanical behaviors of composites made of rGO has not been taken into consideration yet. The objective of this research is to investigate the buckling, and free vibration of functionally graded reduced graphene oxide reinforced nanocomposite (FG rGORC) plates employing isogeometric analysis (IGA). The effective Young's modulus of rGORC is determined based onthe Halpin-Tsai model. Four different FG distribution types of rGO are considered varying across plate thickness. Besides, the refined plate theory is used based on Reddy's third-order function. To capture the size effect, modified couple stress theory (MCST) is employed. A comprehensive study is provided examining the effect of various parameters including rGO weight fraction, FG distribution types, boundary conditions, material length scale parameter, etc. Our obtained results show that the addition of only 1% of uniformly distributed rGO into epoxy plates leads to the fundamental frequency and critical buckling load 18% and 39% higher than those of pure epoxy plates, respectively.

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.

Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.717-727
    • /
    • 2019
  • This paper is motivated by the lack of studies in the technical literature concerning to vibration analysis of a single-layered graphene sheet (SLGS) with corner cutout based on the nonlocal elasticity model framework of classical Kirchhoff thin plate. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of the L-shape SLGS deflection field. Trimming technique is employed to create the cutout in geometry of L-shape plate. The L-shape plate is assumed to be Free (F) in the straight edges of cutout while any arbitrary boundary conditions are applied to the other four straight edges including Simply supported (S), Clamped (C) and Free (F). The Numerical studies are carried out to express the influences of the nonlocal parameter, cutout dimensions, boundary conditions and mode numbers on the variations of the natural frequencies of SLGS. It is precisely shown that these parameters have considerable effects on the free vibration behavior of the system. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems. This study serves as a benchmark for assessing the validity of numerical methods used to analyze the single-layered graphene sheet with corner cutout.

Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete

  • Xu, Jun;Yuan, Shuai;Chen, Weizhen
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.171-188
    • /
    • 2019
  • This study proposed a new and efficient 2D damage-plasticity model within the framework of Isogeometric analysis (IGA) for the geometrically nonlinear damage analysis of concrete. Since concrete exhibits complicated material properties, two internal variables are introduced to measure the hardening/softening behavior of concrete in tension and compression, and an implicit gradient-enhanced formulation is adopted to restore the well-posedness of the boundary value problem. The numerical results calculated by the model is compared with the experimental data of three benchmark problems of plain concrete (three-point and four-point bending single-notched beams and four-point bending double-notched beam) to illustrate the geometrical flexibility, accuracy, and robustness of the proposed approach. In addition, the influence of the characteristic length on the numerical results of each problem is investigated.

Isogeometric Analysis of FGM Plates in Combination with Higher-order Shear Deformation Theory (등기하해석에 의한 기능경사복합재 판의 역학적 거동 예측)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.832-841
    • /
    • 2020
  • Purpose: This study attempts at analyzing mechanical response of functionally graded material (FGM) plates in bending. An accurate and effective numerical approach based on isogeometric analysis (IGA) combined with higher-order shear deformation plate theory to predict the nonlinear flexural behavior is developed. Method: A higher-order shear deformation theory(HSDT) which accounts for the geometric nonlinearity in the von Karman sense is presented and used to derive the equilibrium and governing equations for FGM plate in bending. The nonlinear equations are solved by the modified Newton-Raphson iterative technique. Result: The volume fraction, plate length-to-thickness ratio and boundary condition have signifiant effects on the nonlinear flexural behavior of FGM plates. Conclusion: The proposed IGA method can be used as an accurate and effective numerical tool for analyzing the mechanical responses of FGM plates in flexure.

Isogeometric Analysis of FG-CNTRC Plate in Bending based on Higher-order Shear Deformation Theory (탄소 나노튜브 보강 기능경사복합재 판의 등기하 거동 해석)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.839-847
    • /
    • 2021
  • Purpose: This study investigates mechanical behavior of functionally graded (FG) carbon nanotube-reinforced composite (CNTRC) plate in flexure. Isogeometric analysis (IGA) method coupled with shear deformable theory of higher-order (HSDT) to analyze the nonlinear bending response is presented. Method: Shear deformable plate theory into which a polynomial shear shape function and the von Karman type geometric nonlinearity are incorporated is used to derive the nonlinear equations of equilibrium for FG-CNTRC plate in bending. The modified Newton-Raphson iteration is adopted to solve the system equations. Result: The dispersion pattern of carbon nanotubes, plate geometric parameter and boundary condition have significant effects on the nonlinear flexural behavior of FG-CNTRC plate. Conclusion: The proposed IGA method coupled with the HSDT can successfully predict the flexural behavior of FG-CNTRC plate.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.