• Title/Summary/Keyword: Iso-damping

Search Result 28, Processing Time 0.03 seconds

Measuring of Loss factor and Young's modulus of Plastics with Temperature Variation (온도변화에 따른 플라스틱의 손실계수와 Young 률의 측정)

  • Shin Su Hyun;Jung Sung Soo;Lee Yong Bong;Lee Doo Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.321-322
    • /
    • 2004
  • It is well known that the loss factor and Young's modulus are fundamental mechanical properties of materials. In this study. the dynamic characteristics of plastics are evaluated by using two different standard test methods which are ASTM E 756 and ISO 6721. Polycarbonate and acrylonitrile butadiene styrene were used as test specimens. In order to evaluate vibration of damping properties with temperature, we measured loss factor and Young's modulus of the specimens the temperature range between $-10^{\circ}C$ and $60^{\circ}C$. The Young's modulus for polycarbonate decreased significantly as increasing temperature, while the loss factor increased. However, the Young's modulus and loss factor of acrylonitrile butadiene styrene are varied somewhat with temperature.

  • PDF

Design and Performance Test of Silencers with Ring-shaped Resonators (환형 공명기가 설치된 소음기 설계 및 성능 시험)

  • Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Lee, Jong-Hwa;Lee, Hae-Seong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-364
    • /
    • 2011
  • In this study, ring-shaped acoustic resonators were proposed to be installed in a silencer to increase the acoustic performance of silencer in the low-frequency range. Evaluation of noise reduction performance of acoustic resonator arrays was carried out by measuring the random-incidence absorption coefficient. It was found that the absorption coefficient of resonator array was measured up to 1 at 125 Hz of 1/3-octave band center frequency. Insertion losses of silencers with ring-shaped acoustic resonator arrays were measured based on ISO 7235. The results were shown that the ring-shaped resonator could increase the insertion loss up to 13 dB without flow, whereas 7 dB when flow speed reached 15 m/s. As increasing the flow speed above 15 m/s, the effect of acoustic resonator decreased due to the effect of nonlinear air damping of the resonator. It was also found that the increment of pressure drop by the presence of resonator arrays was about 9 % at flow speed of 25 m/s.

Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration

  • Yu, Helu;Wang, Bin;Zhang, Guoqing;Li, Yongle;Chen, Xingyu
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • Long-span bridges with high flexibility and low structural damping are very susceptible to the vortex-induced vibration (VIV), which causes extremely negative impacts on the ride comfort of vehicles running on the bridges. To assess the ride comfort of vehicles running on the long-span bridges subjected to VIV, a coupled wind-vehicle-bridge system applicable to the VIV case is firstly developed in this paper. In this system, the equations of motion of the vehicles and the bridge subjected to VIV are established and coupled through the vehicle-bridge interaction. Based on the dynamic responses of the vehicles obtained by solving the coupled system, the ride comfort of the vehicles can be evaluated using the method given in ISO 2631-1. At last, the proposed framework is applied to several case studies, where a long-span suspension bridge and two types of vehicles are taken into account. The effects of vehicle speed, vehicle type, road roughness and vehicle number on the ride comfort are investigated.

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

Characteristic of Damping Curve for the Directional System of Magnetic Compass (자기컴퍼스 방위지시부의 제진특성)

  • An, Yeong-Hwa;Jeong, Gong-Heun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 1985
  • This paper describes that the characteristic of movement and the performance of the directional system of the liquid magnetic compass analyze and investigate in the kinds of compass and the coefficient of viscosity of the liquid of compass, which the horizontal magnetic field of the geo-magnetic is varied from the equator to the polar region (0.39 gauss-0.03 gauss) by use of apparatus generating artificial magnetic fields. The results are as follows; 1. It is confirmed that the measured values and the calculated values on the characteristic of damping curve by the type of compass and coefficient of viscosity has almost agree with one another. 2. As the horizontal magnetic force geo-magnetic field approaches around the equator (0.39 gauss), the horizontal magnetic field get near the polar region (0.03 gauss), its period is to be longer and the compass card prove not to be more stabilized. 3. The coefficient of viscosity of the liquid in the A, B, C, D and E compasses used in the experiment is estimated 0.03 poises, 0.02 poises, 0.02 poises, 0.015 poises and 0.048 poises respectively by computer simulation.

  • PDF

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing (Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구)

  • Park, Jin Young;Jang, Kwang-Seok;Lee, Hong-Pyo;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.533-540
    • /
    • 2012
  • Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.

Evaluation of Impact Factor in Composite Cable-Stayed Bridges under Reliability-based Live Load Model (신뢰도 기반 활하중모델에 의한 강합성 사장교의 충격계수 평가)

  • Park, Jae Bong;Park, Yong Myung;Kim, Dong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2013
  • AASHTO LRFD and Korean Bridge Design Code (Limit State Design) specify to consider Truck and Lane load simultaneously determined from reliability-based live load model, and impact shall be applied to the truck load while it shall not be applied to the lane load. In this paper, vehicle-bridge interaction analysis under moving truck and lane loads were performed to estimate impact factor of the cables and girders for the selected multi-cable-stayed composite bridges with 230m, 400m and 540m main span. A 6-d.o.f. vehicle was used for truck load and a series of single-axle vehicles was applied to simulate equivalent lane load. The effect of damping ratio on the impact factor was estimated and then the essential parameters to impact factor, i.e., road surface roughness and vehicle speed were considered. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck load only in the vehicle-bridge interaction analysis. The impact factors evaluated from dynamic interaction analysis were also compared with those by the influence line method that is currently used in design practice to estimate impact factor in cable-stayed bridge.

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.