• Title/Summary/Keyword: Islanded operation mode

Search Result 19, Processing Time 0.029 seconds

Fuzzy Droop Control considering SOC Balancing of BESSs (다수 BESS의 SOC Balancing을 고려한 퍼지 드룹 제어)

  • Han, Seong-Geun;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.616-622
    • /
    • 2015
  • A microgrid which is composed of distributed generation systems, energy storage systems and loads is operated in the grid-connected mode and in the islanded mode. Especially, in the islanded mode, a microgrid should maintain frequency in the allowed range. The frequency is decided by a balance between power supply and power demand. In general, the frequency is controlled by using battery energy storage systems (BESSs) in the microgrid. Especially, droop control is applied to controlling BESSs in the microgrid. Meanwhile, over-charging and deep-discharging of BESS in operation and control cause life-shortening of batteries. In this paper, a fuzzy droop control is proposed to change droop gains adaptively by considering state of charge (SOC) of BESSs to improve the life cycle of the battery. The proposed fuzzy droop control adjusts droop gains based on SOC of BESSs in real time. In other to show the performance of the proposed fuzzy droop control, simulation based on Matlab/Simulink is performed. In addition, comparison of the convention droop control and the proposed fuzzy droop control is also performed.

FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Guen;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Gi-Hyun;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

The Operating characteristics of Community Energy System(CES) with Grid connection and isolation (지역 에너지 시스템의 계통 연계 및 독립 운전 특성에 관한 연구)

  • Park, Y.U.;Kim, K.H.;Jang, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.258-260
    • /
    • 2004
  • This paper analyse a operating characteristics when the Community Energy System (CES) is operated islanding mode. In the near future, CES might be one of major energy supply structures. The basic concept of CES is that it supplies electrical and thermal energy to the local customer loads through the islanded power network separated from the grid. The CES must be supplying local load with stable energy on the islanding mode, analysing necessary to thoroughly the operation feature. In order to show them, in this paper, we model the CES with 2.34 MVA DG and simulate the operating feature on the islanding mode of CES. The simulation results show that, in order to stability operate, the CES need the efficient load management and generation control schemes during the transition periods.

  • PDF

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

Operational Analysis of DC Micro-grid using PSCAD/EMTDC Software (PSCAD/EMTDC를 이용한 DC Micro-grid의 동작 분석)

  • Lee, Ji-Heon;Kwon, Ki-Hyun;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.446_447
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably.

  • PDF

Improved Decoupled Control and Islanding Detection of Inverter-Based Distribution in Multibus Microgrid Systems

  • Pinto, Smitha Joyce;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1526-1540
    • /
    • 2016
  • This work mainly discusses an accurate and fast islanding detection based on fractional wavelet packet transform (FRWPT)for multibus microgrid systems. The proposed protection scheme uses combined desirable features retrieved from discrete fractional Fourier transform (FRFT) and wavelet packet transform (WPT) techniques, which provides precise time-frequency information on minute perturbation signals introduced in the system. Moreover, this study focuses on the design of decoupling control with a distributed controller based on state feedback for the efficient operation of microgrid systems that are transitioning from the grid-connected mode to the islanded mode. An IEEE 9-bus test system with inverter based distributed generation (DG) units is considered for islanding assessment and smooth operation. Finally, tracking errors are greatly reduced with stability improvement based on the proposed controller. FRWPT based islanding detection is demonstrated via a time domain simulation of the system. Simulated results show an improvement in system stability with the application of the proposed controller and accurate islanding detection based on the FRWPT technique in comparison with the results obtained by applying the wavelet transform (WT) and WPT.

A Study on the Optimization of Power Consumption Pattern using Building Smart Microgrid Test-Bed (Building Smart Microgrid Test-Bed를 이용한 전력사용량 패턴 최적화방안 연구)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The microgrid system is the combination of photovoltaic(PV) array, load, and battery energy storage system. The control strategies were defined as multi-modes of operation, including rest operation without use of battery, power charging, and power discharging, which enables grid connected mode or islanded mode. Photovoltaic power is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to variation of insolation and duration of sunshine. As a solution to the above problem, energy storage system(ESS) is considered generally. There fore, in this study, we did basic research activities about optimization method of the amount of energy used, using a smart microgrid test-bed constructed in building. First, we analyzed the daily, monthly and period energy pattern amount of power energy used, and analyzed PV power generation level which is built on the roof. Utilizing building energy pattern analysis data, we was studied an efficient method of employing the ESS about building power consumption pattern and PV generation.

Power Decoupling Control Method of Grid-Forming Converter: Review

  • Hyeong-Seok Lee;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.221-229
    • /
    • 2023
  • Recently, Grid-forming(GFM) converter, which offers features such as virtual inertia, damping, black start capability, and islanded mode operation in power systems, has gained significant attention. However, in low-voltage microgrids(MG), it faces challenges due to the coupling phenomenon between active and reactive power caused by the low line impedance X/R ratio and a non-negligible power angle. This power coupling issue leads to stability and performance degradation, inaccurate power sharing, and control parameter design problems for GFM converters. Therefore, this paper serves as a review study on not only control methods associated with GFM converters but also power decoupling techniques. The aim is to introduce promising control methods and enhance accessibility to future research activities by providing a critical review of power decoupling methods. Consequently, by facilitating easy access for future researchers to the study of power decoupling methods, this work is expected to contribute to the expansion of distributed power generation.