• 제목/요약/키워드: Islanded Microgrid

검색결과 57건 처리시간 0.029초

마이크로그리드 독립운전모드를 위한 주파수 추종에 관한 연구 (A Novel Frequency Tracker for Islanded-Mode Operation in Microgrid)

  • 전진홍;김경훈;황철상;김장목
    • 전기학회논문지
    • /
    • 제60권7호
    • /
    • pp.1331-1338
    • /
    • 2011
  • This paper proposes a method for frequency control of islanded microgrid with battery energy storage system. For frequency control of islanded microgrid, battery energy storage system uses a phase locked loop algorithm with positive sequence components for a fast frequency estimation. Microgrid is a power system with small inertia because it has small capacity generators and inverter systems for renewable energy. So, Islanded microgrid's frequency varies fast and large as small generation and load changes. To reduce frequency variation of islanded microgrid, it needs a device with fast frequency response. For fast frequency response, a fast frequency tracking is important. To show the validation of proposed fast frequency tracking algorithm, battery energy storage system with proposed algorithm is tested in microgrid pilot plant.

독립운전 시나리오를 고려한 마이크로그리드의 최적 발전기 기동정지 계획 (Unit Commitment of a Microgrid Considering Islanded Operation Scenarios)

  • 이시영
    • 전기학회논문지
    • /
    • 제67권6호
    • /
    • pp.708-714
    • /
    • 2018
  • Islanded operation of a microgrid can ensure the reliable operation of the system when a large accident occurs in the main grid. However, because the generation capability of a microgrid is typically limited, a microgrid operator should take islanded operation risk into account in scheduling its generation resources. To address this problem, in this paper we have proposed two unit commitment formulations based on the islanding scenario that reflect the expected and worst-case values of the islanded operation risk. An optimal resource scheduling strategy is obtained for the microgrid operator by solving these optimization problem, and the effectiveness of the proposed method is investigated by numerical simulations.

Supervisory Control for Energy Management of Islanded Hybrid AC/DC Microgrid

  • Mansour, Henda Ben;Chaarabi, Lotfi;Jelassi, Khaled;Guerrero, Josep M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.355-363
    • /
    • 2022
  • This paper presents the modeling for islanded hybrid AC/DC microgrid and the verification of the proposed supervisory controller for energy management for this microgrid. The supervisory controller allows the microgrid system to operate in different power flows through the proposed control algorithm, it has several roles in the management of the energy flow between the different components of the microgrid for reliable operation. The proposed microgrid has both essential objectives such as the maximum use of renewable energies resources and the reduction of multiple conversion processes in an individual AC or DC microgrids. The microgrid system considered for this study has a solar photovoltaic (PV), a wind turbine (WT), a battery (BT), and a AC/DC loads. A small islanded hybrid AC/DC microgrid has been modeled and simulated using the MATLAB-Simulink. The simulation results show that the system can maintain stable operation under the proposed supervisory controller when the microgrid is switched from one operating mode of energy flow to another.

OPAL-RT 기반의 Hardware-in-the-Loop Simulation (HILS) 시스템을 이용한 독립운전모드 마이크로그리드 시뮬레이션 (Islanded Microgrid Simulation using Hardware-in-the Loop Simulation (HILS) System based on OPAL-RT)

  • 유형준;김학만
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.566-572
    • /
    • 2013
  • A microgrid is a small scale power system. The microgrid is operated in two operation modes, the grid-connected mode and the islanded mode. In the islanded mode, the frequency of a microgrid should be maintained constantly. For this, the balance between power supply and power demand during islanded mode should be met. In general, energy storage systems (ESSs) are used to solve power imbalance. In this paper, the frequency control effect of a Lithium-ion battery energy storage system (Li-ion BESS) has been tested on the hardware-in-the loop simulation (HILS) system environment.

독립운전 마이크로그리드의 능동형 동기 투입 제어에 관한 연구 (Study on the Dynamic Synchronizing Control of An Islanded Microgrid)

  • 조창희;전진홍;김종율;권순만;김성신
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1112-1121
    • /
    • 2011
  • A microgrid is an aggregation of multiple distributed generators (DGs) such as renewable energy sources, conventional generators, and energy storage systems that provide both electric power and thermal energy. Generally, a microgrid operates in parallel with the main grid. However, there are cases in which a microgrid operates in islanded mode, or in a disconnected state. Islanded microgrid can change its operational mode to grid-connected operation by reconnection to the grid, which is referred to as synchronization. Generally, a single machine simply synchronizes with the grid using a synchronizer. However, the synchronization of microgrid that operate with multiple DGs and loads cannot be controlled by a traditional synchronizer, but needs to control multiple generators and energy storage systems in a coordinated way. This is not a simple job, considering that a microgrid consists of various power electronics-based DGs as well as alternator-based generators that produce power together. This paper introduces the results of research examining an active synchronizing control system that consists of the network-based coordinated control of multiple DGs. Consequently, it provides the microgrid with a deterministic and reliable reconnection to the grid. The proposed method is verified by using the test cases with the experimental setup of a microgrid pilot plant.

Control Strategy for Accurate Reactive Power Sharing in Islanded Microgrids

  • Pham, Xuan Hoa Thi;Le, Toi Thanh
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.1020-1033
    • /
    • 2019
  • This paper presents a control strategy to enhance the accuracy of reactive power sharing between paralleled three-phase inverters in an islanded microgrid. In this study, the mismatch of power sharing when the line impedances have significant differences between inverters connected to a microgrid has been solved, the accuracy of the reactive power sharing in an islanded microgrid is increased, the voltage droop slope is tuned to compensate for the mismatch of voltage drops across the line impedances by using an enhanced droop controller. The proposed method ensures accurate power sharing even if the microgrid has local loads at the output of the inverters. The control model has been simulated by MATLAB/Simulink with two or three inverters connected in parallel. Simulation results demonstrate the accuracy of the implemented control method. Furthermore, in order to validate the theoretical analysis and simulation results, an experimental setup was built in the laboratory. Results obtained from the experimental setup verify the effectiveness of the proposed method.

Talmudic Approach to Load Shedding of Islanded Microgrid Operation Based on Multiagent System

  • Kim, Hak-Man;Kinoshita, Tetsuo;Lim, Yu-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.284-292
    • /
    • 2011
  • This paper presents a load-shedding scheme using the Talmud rule in islanded microgrid operation based on a multiagent system. Load shedding is an intentional load reduction to meet a power balance between supply and demand when supply shortages occur. The Talmud rule originating from the Talmud literature has been used in bankruptcy problems of finance, economics, and communications. This paper approaches the load-shedding problem as a bankruptcy problem. A load-shedding scheme is mathematically expressed based on the Talmud rule. For experiment of this approach, a multiagent system is constructed to operate test islanded microgrids autonomously. The suggested load-shedding scheme is tested on the test islanded microgrids based on the multiagent system. Results of the tests are discussed.

Enhanced Reactive Power Sharing and Voltage Restoration in Islanded Microgrid

  • Pham, Minh-Duc;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.47-48
    • /
    • 2016
  • Parallel distributed generators (DGs) in the islanded micro-grid are normally controlled with the aid of the droop control scheme. However, the traditional droop control methods which use the P-${\omega}$ and Q-E curve to share power between DGs are still concerned to improve the accurate of reactive power sharing and variation of frequency and voltage at the point of common coupling (PCC). This paper proposes a control scheme to solve the limitation of microgrid in islanded operation such as reactive power sharing accuracy and PCC voltage and frequency restoring. In order to achieve the control objective, a secondary control is implemented with both central controller and local controller by using the low bandwidth communications. The effectiveness of the proposed control scheme is analyzed through the simulation.

  • PDF

독립운전 모드의 마이크로그리드에서 EDLC와 BESS의 주파수 협조제어전략 설계 (Design of Coordinated Frequency Control Strategy applied to EDLC and BESSs for Microgrid in the Islanded Mode)

  • 유형준;김학만
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.820-827
    • /
    • 2014
  • Since a microgrid has renewable energy sources, imbalance between power supply and power demand occurs in the islanded mode. In order to solve the imbalance, several energy storage systems (ESSs) such as bettary energy storage system (BESS), EDLC (electric double layer capacitor), flywheel, and SMES (superconducting magnetic energy storage) are generally used. Especially, their electrical characteristics are different. For efficient use of them, a coordinated control scheme is required. In this paper, a coordinated control scheme for using a Lead-acid BESS, a Lithium BESS, and a EDLC is designed to efficient frequency control for a microgrid in the islanded mode. The coordinated frequency control strategy is designed based on their electrical characteristics. The feasibility of the proposed coordinated frequency control strategy is verified through the simulation.

An Enhanced PCC Harmonic Voltage Mitigation and Reactive Power Sharing in Islanded Microgrid

  • Pham, Minh-Duc;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.138-140
    • /
    • 2018
  • Parallel distributed generators (DGs) in the islanded microgrid are generally operated autonomously by means of the droop control scheme. However, the traditional droop control methods which use the P-${\omega}$ and Q-E curve to share power between DGs are still concerned to improve the accuracy of reactive power sharing. Moreover, the uncontrolled harmonic power reduces the point of common coupling (PCC) voltage quality and microgrid stability. In order to solve these problems, this paper proposes an enhanced PCC harmonic control strategy and an improved reactive power sharing control scheme. Based on the low bandwidth communications, a secondary control is implemented with both central controller and local controller. The effectiveness of the proposed control scheme is analyzed through the simulation.

  • PDF