• 제목/요약/키워드: Island power system

검색결과 248건 처리시간 0.036초

연계된 계통간의 최적 송전용량 산정 (Evaluation of Optimal Transfer Capability in Power System interconnection)

  • 손현일;최아름;이성훈;김진오;전동훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.195_196
    • /
    • 2009
  • As the electrical power industry is restructured, the electrical power exchange is becoming extended. One of the key information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). To calculate ATC, traditional deterministic approach is based on the severest case, but the approach has the complexity of procedure. Therefore, novel approach for ATC calculation is proposed using cost-optimization method in this paper, and is compared with well-being method and risk-benefit method. This paper proposes the optimal transfer capability of HVDC system between mainland and a separated island in Korea through these three methods. These methods will consider production cost, wheeling charge through HVDC system and outage cost with one depth (N-1 contingency).

  • PDF

스마트 그리드를 위한 분산자원과 전력변환장치 기반 마이크로그리드 독립운전 (Microgrid Island Operation Based on Power Conditioning System with Distributed Energy Resources for Smart Grid)

  • 허세완;박완기;이일우
    • 한국통신학회논문지
    • /
    • 제42권5호
    • /
    • pp.1093-1101
    • /
    • 2017
  • 스마트 그리드를 구성하는 기본 단위 요소인 마이크로그리드(Microgrid)는 전력의 중앙 공급방식에서 벗어나 독립된 하나의 체계를 이룬다. 본 논문은 전력변환장치(Power Conditioning System)를 기반으로 마이크로그리드를 계통으로부터 전기적으로 독립시키고, 신재생 에너지원과 에너지 저장장치(Energy Storage System) 등의 분산자원(Distributed Energy Resource)을 활용하여 효과적으로 독립 상태를 유지하고 운영할 수 있는 방법을 제안한다. 계통의 위상검출과 동기화를 통해 계통에 연계하거나 독립 시에 부하에 미치는 영향을 최소화할 뿐만 아니라 계통의 정전 상황에서도 안정적으로 운영이 가능하다.

풍력발전단지 탈락 시를 고려한 단지 출력 변동 저감을 위한 HESS의 용량 산정 (Determination of the HESS Capacity for Mitigation of Fluctuation of Wind Farm Output under Consideration of Disconnecting Wind Farm)

  • 김승현;고지한;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.388-389
    • /
    • 2013
  • This paper presents the method for the fluctuation smoothing control by using relaxation time variable control of battery. When the output power of wind farm is changed suddenly, it is necessary to control the output power of wind farm. The smoothing relaxation time is changed within limits of battery output power. Using the hybrid energy storage system (HESS) combined with battery energy storage system and electric double layer capacitor, it is possible to control the output power of wind farm. The capacity of battery is determined by considering the case of the disconnecting wind farm from the grid. To verify the proposed method, simulations are carried out by using PSCAD/EMTDC with actual data of wind farm in the Jeju Island.

  • PDF

에너지저장장치를 이용한 제주지역 풍력발전 한계용량 증대효과 분석 (Increasing Effect Analysis of the Wind Power Limit Using Energy Storage System in Jeju-Korea)

  • 김영환;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.81-90
    • /
    • 2014
  • The Jeju-Korea power system is a small-sized network with a system demand ranging from a autumn minimum of 350MW to a summer peak of 716MW. Because Jeju island is well exposed to north-east winds with high speed, applications to connect to Jeju power system are flooded. Considering physical/environmental constraints, Jeju Self-governing Province has also target for the wind power capacity of 1,350MW by 2020. It amounts to two or three times of Jeju average-demand power and wind power limit capacity announced by Korea Power Exchange (KPX) company. Wind farm connection agreements will be signed to maximize utilization of wind resource. In spite of submarine cable HVDC connected to Korea mainland, Jeju power system is independently operated by frequency and reserve control. This study reevaluates wind power limit based on the KPX criteria from 2016 to 2020. First of all wind power generation limit are affected by off-peak demand in Jeju power system. Also the possibility capacity rate of charging wind power output is evaluated by using energy storage system (ESS). As a result, in case of using 110MWh ESS, wind power limit increases 33~55MW(30~50% of ESS), wind power constraint energy decreases from 68,539MWh to 50,301MWh and wind farm capacity factor increases from 25.9 to 26.1% in 2020.

에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안 (Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System)

  • 오웅진;이연찬;최재석;임진택
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.

시계열 모형을 이용한 단기 풍력 단지 출력 지역 통합 예측에 관한 연구 (A Study on Centralized Wind Power Forecasting Based on Time Series Models)

  • 위영민;이재희
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.918-922
    • /
    • 2016
  • As the number of wind farms operating has increased, the interest of the central unit commitment and dispatch for wind power has increased as well. Wind power forecast is necessary for effective power system management and operation with high wind power penetrations. This paper presents the centralized wind power forecasting method, which is a forecast to combine all wind farms in the area into one, using time series models. Also, this paper proposes a prediction model modified with wind forecast error compensation. To demonstrate the improvement of wind power forecasting accuracy, the proposed method is compared with persistence model and new reference model which are commonly used as reference in wind power forecasting using Jeju Island data. The results of case studies are presented to show the effectiveness of the proposed wind power forecasting method.

제주도 해상풍력 에너지 자원평가를 위한 InVEST Offshore Wind 모형 적용 (Application of InVEST Offshore Wind Model for Evaluation of Offshore Wind Energy Resources in Jeju Island)

  • 김태윤;장선주;김충기
    • 한국지리정보학회지
    • /
    • 제20권2호
    • /
    • pp.47-59
    • /
    • 2017
  • 본 연구는 InVEST(Integrated Valuation of Ecosystem Services and Tradeoff) Offshore Wind 모형을 활용하여 제주도 장선주 인근 해역의 해상풍력 에너지 자원을 평가하였다. 초단기 기상분석 및 예측 시스템(KLAPS)의 재분석 자료를 이용하여 제주도 인근 해역의 풍력밀도를 계산하고 터빈 조성비용, 터빈의 운영 효율, 해저케이블 설치비용, 20년 운영시나리오, 유지관리비 등을 고려하여 168MW 해상풍력 단지를 설치하였을 때의 순현재가치를 산정하였다. 제주도 인근 해역의 풍력밀도 분포도를 통하여 제주도 서쪽해역과 동쪽해역에 높은 풍력자원이 있음을 알 수 있었으며, 대부분의 서측해역과 동측해역은 $400W/m^2$ 이상의 높은 풍력밀도를 보였다. 제주지역 해상풍력발전에 대한 순현재가치를 가시적으로 평가하기 위하여 5등급으로 구분하였으며, $400W/m^2$ 이상의 풍력자원이 존재하는 서측 해역에서 높은 순현재가치를 보였다. InVEST Offshore Wind 모형은 다양한 운영시나리오에 대하여 최적의 공간정보를 신속하게 제공해 줄 수 있으며, 해양생태계서비스 평가 결과와 혼용하여 사용한다면 보다 효율적인 해양공간을 이용할 수 있을 것으로 판단된다.

변동 제주 SMP를 적용한 제주도 육상풍력단지의 경제성 재평가 (Reassessment of Economic Feasibility for a Wind Farm on Jeju Island Considering Variable Jeju SMP)

  • 김효정;고경남;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.41-50
    • /
    • 2013
  • Economic feasibility study using weighted average variable Jeju System Marginal Price, SMP, was conducted for Gasiri wind farm of Jeju Island. To predict the variable Jeju SMP, generator share ratio for SMP was calculated from the real time wind power production and the power demand data for years. Also, sensitivity analysis on Net Present Value, NPV, and Benefit/Cost Ratio, B/C ratio, were performed to clarify which factors are more important in assessing economic feasibility. The result shows that the Gasiri wind farm has a minimum of 110 billion won and a maximum of 132 billion won difference between fixed and variable SMP. Also, Capacity Factor, C.F., had the highest sensitivity for NPV, followed by SMP. Accordingly, when economic analysis for a potential wind farm site is carried out, the variable SMP as well as C.F. should be considered for more accurate assessment of the wind farm.