• Title/Summary/Keyword: Island partition

Search Result 4, Processing Time 0.018 seconds

Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost

  • Zhu, Junpeng;Gu, Wei;Jiang, Ping;Song, Shan;Liu, Haitao;Liang, Huishi;Wu, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2146-2156
    • /
    • 2017
  • When a failure occurs in active distribution system, it will be isolated through the action of circuit breakers and sectionalizing switches. As a result, the network might be divided into several connected components, in which distributed generations could supply power for customers. Aimed at decreasing customer interruption cost, this paper proposes a theoretically optimal island partition model for such connected components, and a simplified but more practical model is also derived. The model aims to calculate a dynamic island partition schedule during the failure recovery time period, instead of a static islanding status. Fluctuation and stochastic characteristics of the renewable distributed generations and loads are considered, and the interruption cost functions of the loads are fitted. To solve the optimization model, a heuristic search algorithm based on the hill climbing method is proposed. The effectiveness of the proposed model and algorithm is evaluated by comparing with an existing static island partitioning model and intelligent algorithms, respectively.

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

Alkaline Weight Reduction and Physical Properties of 0.01d Polyester Ultramicro Fiber (0.01d 폴리에스테르 초극세 섬유의 알칼리 감량과 물성)

  • Park, Jae-Min;Jeong, Dong-Seok;Rho, Hwan-Kown;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.18 no.4
    • /
    • pp.37-42
    • /
    • 2006
  • Two kinds of sea-island type polyester ultramicro fibers (fiber fineness : 0.01 and 0.05 denier) were treated with NaOH varying time and concentration. Surface morphology of the treated fibers with alkaline weight loss was observed by SEM. The treated effects were investigated by measuring density, melting temperature, and X-ray diffraction patterns. The surface morphology of the polyester ultramicro fiber was changed by NaOH concentration. Weight loss of 0.01d fiber was much larger than that of 0.05d fiber. Density and crystallinity were increased with weight loss of fiber. After the weight loss had finished, the density and crystallinity were decreased because of attack of island partition of the fiber. A melting temperature$(T_m)$ is $250^{circ}$ at untreated fiber on the whole and in 0.05d fiber the $(T_m)$ is $252^{circ}$ at untreated. In 0.01d fiber the $(T_m)$ was increased with weight loss of fiber.

Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area (백령도 및 서울 대기오염집중측정소 에어로졸 질량 분석기 자료를 이용한 대기 중 에어로졸 화학적 특성 연구)

  • Park, Taehyun;Ban, Jihee;Kang, Seokwon;Ghim, Young Sung;Shin, Hye-Jung;Park, Jong Sung;Park, Seung Myung;Moon, Kwang Joo;Lim, Yong-Jae;Lee, Min-Do;Lee, Sang-Bo;Kim, Jeongsoo;Kim, Soon Tae;Bae, Chang Han;Lee, Yonghwan;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.430-446
    • /
    • 2018
  • To improve understanding of the sources and chemical properties of particulate pollutants on the Korean Peninsula, An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine particle ($NR-PM_1$) from 2013 to 2015 at Baengnyeong Island and Seoul metropolitan area (SMA), Korea. The chemical composition of $NR-PM_1$ in Baengnyeong island was dominated by organics and sulfate in the range of 36~38% for 3 years, and the organics were the dominant species in the range of 44~55% of $NR-PM_1$ in Seoul metropolitan area. The sulfate was found to be more than 85% of the anthropogenic origin in the both areas of Baengnyeong and SMA. Ratio of gas to particle partition of sulfate and nitrate were observed in both areas as more than 0.6 and 0.8, respectively, representing potential for formation of additional particulate sulfate and nitrate. The high-resolution spectra of organic aerosol (OA) were separated by three factors which were Primary OA(POA), Semi-Volatility Oxygenated Organic Aerosol (SV-OOA), and Low-Volatility OOA(LV-OOA) using positive matrix factorization (PMF) analysis. The fraction of oxygenated OA (SOA, ${\fallingdotseq}OOA$=SV-OOA+LV-OOA) was bigger than the fraction of POA in $NR-PM_1$. The POA fraction of OA in Seoul is higher than it of Baengnyeong Island, because Seoul has a relatively large number of primary pollutants, such as gasoline or diesel vehicle, factories, energy facilities. Potential source contribution function (PSCF) analysis revealed that transport from eastern China, an industrial area with high emissions, was associated with high particulate sulfate and organic concentrations at the Baengnyeong and SMA sites. PSCF also presents that the ship emissions on the Yellow Sea was associated with high particulate sulfate concentrations at the measurement sites.