• Title/Summary/Keyword: Ischemic Damage

Search Result 287, Processing Time 0.025 seconds

Pharmacological Actions of New Woohwangchungsimwon Pill on Cerebral Ischemia and Central Nervous System (신우황청심원의 뇌허혈 및 중추신경계에 대한 약효)

  • Cho, Tai-Soon;Lee, Sun-Mee;Lee, Eun-Bang;Cho, Sung-Ig;Kim, Yong-Kee;Shin, Dae-Hee;Park, Dai-Kyu
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.817-828
    • /
    • 1997
  • In order to investigate pharmacological properties of New Woohwangchungsimwon Pill (NWCH) and Woohwangchungsimwon Pill(WCH), effects of NWCH and WCH on cerebral ischemia and central nervous system were compared. Cerebral ischemia insult was performed using unilateral carotid artery occlusion in Mongolian gerbils. The histological observations showed preventive effect of NWCH and WCH treatments with ischemia-induced brain damage. The ATP in brain tissue was decreased in vehicle-treated ischemic gerbils. This decrease was prevented by NWCH and WCH treatment. In contrast to what was seen with ATP, the lactate and lipid peroxide were both elevated in vehicle-treated ischemic gerbils. This elevation was inhibited by NWCH and WCH treatments. In central nervous system, NWCH and WCH had sedative effect in rotarod and spontaneous activity test, but no effects on the hexobarbital-induced sleeping time. And, NWCH and WCH had weak anticonvulsion effects in electric shock- and pentetrazol-induced convulsion test. NWCH and WCH increased the respiration rate, but decreased the respiration depth in rats. Furthermore, NWCH and WCH showed antistress effect. Our findings suggest that the pharmacological profiles of NWCH on cerebral ischemia and central nervous system are similar to that of WCH.

  • PDF

Effects of Lumbricus Extract on Cerebral Ischemia and Cells in Rats (구인(蚯蚓) 추출물이 흰쥐의 뇌허혈과 세포에 미치는 효과)

  • Yu, Deok-Seon;Yeom, Seung-Ryong;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • Objectives : This study was designed to investigate the effects of Lumbricus extract(LE) on the regional cerebral blood flow(rCBF) in ischemic rats, further to determine the mechanism of action of LE, and the effects that LE inhibits lactate dehydrogenase(LDH) activity in brain cells. Methods and materials : This study, ischemic rats were divided into total four group: control group(n=6), experimental group I (LE treated group)(n=6), experimental group II(LE treated group after pretreatment with indomethacin)(n=6), experimental group III(LE treated group after pretreatment with methylene blue)(n=6). And the measurement that LE inhibits LDH activity in the damage to brain cells to N-methyl-D-aspartic acid(NMDA). The changes of rCBF were determinated by laser-doppler flowmetry(LDF), and LDH activity was determinated by microplate reader in vitro. Results : 1. The rCBF was significantly improved by LE(10 mg/kg, i.p.) during the period of cerebral reperfusion, compared with the control group. 2. The rCBF was significantly increased by LE after pretreatment with indomethacin(1 mg/kg, i.p.), an inhibitor of cyclooxygenase, during the period of cerebral reperfusion, compared with the LE group, and rCBF was accelerated by LE after pretreatment with methylene blue($10{\mu}g/kg$, i.p.) an inhibitor of guanylate cyclase during the period of cerebral reperfusion, compared with the control group. 3. LE significantly inhibited LDH activity in vitro in a dose-dependent manner. Conclusions : From the above results, these were suggested that Lumbricus had anti-ischemia action in connection with cyclooxygenase and might prevent the brain cells death through inhibited LDH activity.

The Neuroprotective Effects of Uncariae Ramulus et Uncus on focal cerebral ischemia in rats brains (백서(白鼠)의 국부(局部) 뇌경색(腦硬塞)에 대한 조구등(釣鉤藤)의 신경보호(神經保護) 효과(效果))

  • Kwon Hyung-Su;Oh Yong-Seong;Lee So-Yeon;Park Chi-Sang;Park Chang-Gook;Jang Woo-Seok
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • The goal of this study is to investigate whether Uncariae Ramulus et Uncus can protect nerve cells against ischemic neuronal damage is caused by middle cerebral artery occlusion (MCAO) in rats' brains and to investigate whether the neuroprotective effect of Uncariae Ramulus et Uncus is concerned with IEGs(immediate early genes) expression. Uncariae Ramulus et Uncus(l00mg/kg) was administered immediately after 2 hours of MCAO and maintained for 7 days. On 7th days after 2 hours of MCAO, the brains of rats were sliced through the hippocampus. c-Fos immunohistochemistry stain and Cresyl violet stain were done for microscopic examination. Each number of viable neurons and c-Fos immunoreactive cells in CA1 was counted. The density of neurons and c-Fos immunoreactive cells were significantly decreased in MCAO-operated ischemic rats compared to that sham-operated rats. Administration of Uncariae Ramulus et Uncus group significantly elevated MCAO-induced decrease in density of neurons, and elevated MCAO-induced decrease in c-Fos immunoreactive cells. These results suggest that the neuroprotective effect of Uncariae Ramulus et Uncus against focal cerebral ischemia. Also, we hypothesized that neuroprotective mechanism of Uncariae Ramulus et Uncus is related to IEGs expression.

  • PDF

Protective Effect of Hwansodan in Serum and Glucose Deprivation Induced-apoptotic Death of PC12 Cells Via Ho-1 Expression (영양혈청 결핍성 PC12 세포고사에서 HO-1의 발현 증가를 통한 환소단의 보호 효과)

  • Jung, Jae-Eun;Kim, Jin-Kyung;Kang, Baek-Gyu;Park, Chan-Ny;Park, Rae-Kil;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1459-1466
    • /
    • 2006
  • The water extract of Hwansodan has been traditionally used for treatment of ischemic brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of Hwansodan rescues cells from neurodegenerative disease. PC12 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular mechanisms of neuronal cell damages. Under deprivation of growth factor and ischemic injury, PC12 cells spontaneously undergoes apoptotic cell death. Serum and glucose deprivation markedly decreased the viability of PC12 cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the aqueous extract of Hwansodan significantly reduced serum and glucose deprivation-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Pretreatment of Hwansodan also ingibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 was completely abolished in serum and glucose deprivated cells. Furthermore, pretreatment of Hwansodan obviously increased heme oxygenase 1 (HO-1) expression in PC12 cells. Taken together, the data suggest that the protective effects of Hwansodan against serum and glucose deprivation induced oxidative injuries may be achieved through the scavenging of reactive oxygene species accompanying with HO-1 induction.

Neuroprotective effect of modify Bo-Yang-Hwan-O-Tang on global ischemia in rat (전뇌 허혈성 흰쥐 모델에서 mBHT의 신경보호효과 연구)

  • Oh, Tae-Woo;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Objectives : Modified Bo-Yang-Hwan-O-Tang (mBHT) is a polyherbal medicine of twelve herbs traditionally used in the treatment of cerebral and cardiac stroke and vascular dementia. The purpose of this study was to evaluate the neuroprotective effect, pyramidal neuronal cell, inflammation and apoptosis of mBHT against global ischemia in rats. Methods : Global ischemia was produced by two-vessel occlusion(2-VO) in SD male rats. mBHT at dose of 500 mg/kg was orally administrated for 2 weeks or 6 weeks after global ischemia. The histopathological changes of ischemic brain were observed by staining of hematoxylin and eosin (H&E) and Nissl and immunohistochemisty with anti-GFAP (glial fibrillary acidic protein) antibody as a astrocyte marker. The expression of inducible nitric oxide synthase (iNOS) and apoptotic proteins such as Bax, Bcl-2 and caspase-3 was determined by western blot. Results : mBHT treatment significantly inhibited the pyramidal neuronal loss in CA1 of hippocampus of global ischemic rats by 2-VO. mBHT also suppressed the activation of astrocytes in the CA1 at 6 weeks after ischemia. In addition, mBHT significantly increased the expression of anti-apoptotic protein, Bcl-2 on iscemic brain, and significantly attenuated the expression of apoptotic proteins, Bax and caspase-3. Conclusions : These results indicate that mBHT inhibits neuronal cell damage induced in global ischemia by 2-VO, suggesting that mBHT may be a potential candidate for the treatment of vascular dementia.

Experimental Study of Fraction of Citri Reticulatae Viride Pericarpium extract on the Brain Damage in Cerebral Ischemia (청파활성분획이 허혈성 뇌손상에 미치는 실험적 연구)

  • Rho Young Ho;Jeong Hyun Woo;Lee Won Suk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.893-898
    • /
    • 2002
  • Citri Reticulatae Viride Pericarpium extract(CRVP) have been used in oriental medicine for many centuries as a therapeutic agent for smoothing the liver and regulating the circulation of qi, and promoting digestion and removing stagnated food. The effects of CRVP on the inhibition of brain damage in cerebral ischemia is not known. Therefore, this Study was designed to investigate the cerebral protective effects of CRVP on the transient cerebral ischemia using modern techniques, and further to provide the possibility of scientification of oriental medicine. The size of cerebral infarct size was measured by morphometry, and brain edema was measured by morphometry and brain water content determination. The results were a$ follows ; 1. Water fraction of CRVP was reduced infect area of rats brain slices which were subjected to a transient cerebral ischemia in a dose-dependent manner. 2. Methylene chloride fraction and hexane fraction of CRVP was significantly reduced infarct area of rats brain slices which were subjected to a transient cerebral ischemia in a dose-dependent manner. 3. Methylene chloride fraction and hexane fraction of CRVP was significantly reduced infarct volume of rats brain which was subjected to a transient cerebral ischemia in a dose-dependent manner. 4. Methylene Chloride fraction and hexane fraction of CRVP was significantly decreased brain edema induced by a transient cerebral ischemia in a dose-dependent manner. 5. Methylene chloride fraction and hexane fraction of CRVP was significantly decreased brain water content of rats which were subjected to a transient cerebral ischemia. It is suggested that CRVP has an anti-ischemic effect through the inhibition of brain damage in a transient cerebral ischemia, and that in future further development of main effective constituent in CRVP can provide a novel therapeutic strategy for cerebral ischemia.

Neuroprotective effects of the antioxidant action of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against ischemic neuronal damage in the brain

  • Ha, Seung Cheol;Han, A Reum;Kim, Dae Won;Kim, Eun-A;Kim, Duk-Soo;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.370-375
    • /
    • 2013
  • Ischemia is characterized by oxidative stress and changes in the antioxidant defense system. Our recent in vitro study showed that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects cortical astrocytes against oxidative stress. In the current study, we examined the effects of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride on ischemia-induced neuronal damage in a gerbil ischemia/reperfusion models. Extensive neuronal death in the hippocampal CA1 area was observed 4 days after ischemia/reperfusion. Intraperitoneal injection of 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride (0.3 mg/kg body weight) significantly prevented neuronal death in the CA1 region of the hippocampus in response to transient forebrain ischemia. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride administration reduced ischemia-induced increases in reactive oxygen species levels and malondialdehyde content. It also attenuated the associated reductions in glutathione level and superoxide dismutase, catalase, and glutathione peroxidase activities. Taken together, our results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride protects against ischemia-induced neuronal damage by reducing oxidative stress through its antioxidant actions.

Neuroprotective effects of resveratrol via anti-apoptosis on hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저 산소 허혈 뇌손상에서 항세포사멸사를 통한 resveratrol의 신경보호 효과)

  • Shin, Jin Young;Seo, Min Ae;Choi, Eun Jin;Kim, Jin Kyung;Seo, Eok Su;Lee, Jun Hwa;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1102-1111
    • /
    • 2008
  • Purpose : Resveratrol, extracted from red wine and grapes, has an anti-cancer effect, an antiinflammatory effect, and an antioxidative effect mainly in heart disease and also has neuroprotective effects in the adult animal model. No studies for neuroprotective effects during the neonatal periods have been reported. Therefore, we studied the neuroprotective effect of resveratrol on hypoxic-ischemic brain damage in neonatal rats via anti-apoptosis. Methods : Embryonic cortical neuronal cell culture of rat brain was performed using pregnant Sprague-Dawley (SD) rats at 18 days of gestation (E18) for the in vitro approach. We injured the cells with hypoxia and administered resveratrol (1, 10, and $30{\mu}g/mL$) to the cells at 30 minutes before hypoxic insults. In addition, unilateral carotid artery ligation with hypoxia was induced in 7-day-old neonatal rats for the in vivo approach. We injected resveratrol (30 mg/kg) intraperitoneally into animal models. Real-time PCR and Western blotting were performed to identify the neuroprotective effects of resveratrol through anti-apoptosis. Results : In the in vitro approach of hypoxia, the expression of Bax, caspase-3, and the ratio of Bax/Bcl-2, indicators of the level of apoptosis, were significantly increased in the hypoxia group compared to the normoxia group. In the case of the resveratrol-treated group, expression was significantly decreased compared to the hypoxia group. And the results in the in vivo approach were the same as in the in vitro approach. Conclusion : The present study demonstrates that resveratrol plays neuroprotective role in hypoxic-ischemic brain damage during neonatal periods through the mechanism of anti-apoptosis.

Changes in Infarct Size after Reperfusion with Time in a Reversible Cerebral Ischemic Model in Rats (백서의 가역성 뇌허혈 모형에서 재관류 시간에 따른 뇌경색 크기의 변화)

  • Jung, Byoung Woo;Choi, Byung-Yon;Cho, Soo-Ho;Kim, Oh-Lyong;Bae, Jang-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.9
    • /
    • pp.1171-1178
    • /
    • 2000
  • Objective : The purpose of the present study was to determine the appropriate time of clinical intervention by observing and analyzing the changes in the size of infarct, penumbra and cerebral edema and the extend of neurological deficit due to reperfusion damage according to time in a reversible cerebral ischemic model of reperfusing blood flow after inducing ischemia by maintaining middle cerebral artery occlusion for 2 hours(h) in rats. Methods : The rats were divided according to reperfusion time into control group(0 h reperfusion time) and experimental groups(0.5, 1, 2, 3, 4, 5, 6, 12, and 24 h of reperfusion time). Results : Changes in the size of infarction due to reperfusion damage were 0.93, 1.48 and 1.16% at 0.5, 1 and 2 h after reperfusion, respectively, and although a statistical significance was not present compared to 1.35% of the control group, damages increased drastically up to 6 h(6.64%), and the size increased were 6.65 and 6.78% at 12 and 24 h, respectively. Also there was no significant difference after 6 h up to 24 h in the size of infarction. In the areas where infarction occurred, reperfusion damage increased significantly with time in cortex than in subcortex. Accordingly, the size of penumbra area also showed a statistically significant decrease from 2 h up to 6 h after reperfusion, and 6 h after reperfusion, the area almost disappeared, becoming permanent infarction. Thus, reperfusion damage showed a significant increase from 2 h up to 6 h after reperfusion, and became steady thereafter. As for the mean ratio of the extend of cerebral edema, the control group and reperfusion 0.5 h group were 1.073 and 1.081, respectively ; up to 2 h thereafter, the ratio decreased to 1.01 but increased again with time ; and in reperfusion 12 h and reperfusion 24 h, the ratios were 1.070 and 1.075, respectively, showing similar size with that of control group. As for neurological deficit scores, the score of the control group was 2.67, that of reperfusion 2 h was 2, those of reperfusion 3 h and 6 h groups were 3.2 and 3.8, respectively, and those of reperfusion 12 h and 24 h groups were 4.2 and 4.6, respectively. Thus, as for the test results, the neurological deficit increased with time 2 h after reperfusion, and in reperfusion 12 and 24 h groups, almost all the symptoms appeared. Conclusion : As shown in these results, although the changes in the size of infarction due to reperfusion damage did not increase up to 2 h after reperfusion in the experimental groups compared to the control group, damage increased significantly thereafter up to 6 h, and the size remained about the same from 6 h to 24 h after reperfusion, becoming permanent infarction ; thus, the appropriate time of intervention according to the present study is at least 6 h before after maintaining reperfusion, including the time of cerebral artery occlusion.

  • PDF

Effects of Siegesbckiae Herba on the Brain Ischemia (희렴 이 뇌허혈에 미치는 효과)

  • Han Jong Hyun;Na Han Il;Kyu Ho Kyung;Jo Kyu Won;Kim Kyung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1643-1651
    • /
    • 2004
  • This experimental study was designed to investigate the effects of SIEGESBECKIAE HERBA extract (SHE) on the change of cerebral hemodynamics 〔regional cerebral blood flow (rCBF) and mean arterial blood pressure(MABP)〕 in normal condition and cerebral ischemic rats, and to determine the mechanism of action of SHE. This study was designed to investigate whether or not SHE inhibit lactate dehydrogenase (LDH) activity in neuronal cells and cytokines production in serum of cerebral ischemic rats. The results were as follows SHE increased rCBF significantly in a dose-dependent manner, but MABP was not changed by SHE in normal rats. The SHE-induced increase in rCBF was significantly inhibited by pretreatment with indomethacin (IDN), an inhibitor of cyclooxygenase but was increased by methylene blue (MTB), an inhibitor of guanylate cyclase. SHE inhibited lactate dehydrogenase (LDH) activity significantly in neuronal cells. rCBF was increased significantly and stably by SHE(10㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group in ischemic rats. In serum by drawing from femoral arterial blood after middle cerebral arterial occlusion(MCAO) for 1hr and reperfusion for 1hr, the sample group was decreased IL-1β production significantly compared to that of the control group. In serum by drawing from femoral arterial blood after MCAO 1hr and reperfusion 1hr, sample group decreased TNF-α production significantly compared to that of the control grolilp. In serum by drawing from femoral arterial blood after reperfusion 1hr, sample group increased TGF-β production significantly compared to that of the control group. In serum by drawing from femoral arterial blood after MCAO for 1hr and reperfusion for 1hr, IL-10 production of the sample group was similar to that of control group. These results suggested that SHE had inhibitive effect on the brain damage by inhibited LDH activity, IL-1β and TNF-α production, but accelerated TGF-β production.