• Title/Summary/Keyword: IscU

Search Result 6, Processing Time 0.018 seconds

High-pressure NMR analysis on Escherichia coli IscU

  • Jongbum Na;Jinbeom Si;Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • IscU, the iron-sulfur (Fe-S) cluster scaffold protein, is an essential protein for biogenesis of Fe-S clusters. Previous studies showed that IscU manifests a metamorphic structural feature; at least two structural states, namely the structured state (S-state) and the disordered state (D-state), interconverting in a physiological condition, was observed. Moreover, subsequent studies demonstrated that the metamorphic flexibility of IscU is important for its Fe-S cluster assembly activity as well as for an efficient interaction with various partner proteins. Although solution nuclear magnetic resonance (NMR) spectroscopy has been a useful tool to investigate this protein, the detailed molecular mechanism that sustains the structural heterogeneity of IscU is still unclear. To tackle this issue, we applied a high-pressure NMR (HP-NMR) technique to the IscU variant, IscU(I8K), which shows an increased population of the S-state. We found that the equilibrium between the S- and D-state was significantly perturbed by pressure application, and the specific regions of IscU exhibited more sensitivity to pressure than the other regions. Our results provide novel insights to appreciate the dynamic behaviors of IscU and the related versatile functionality.

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

Assembly Mechanism of [$Fe_2S_2$] Cluster in Ferredoxin from Acidithiobacillus ferrooxidans

  • Chen, Qian;Mo, Hongyu;Tang, Lin;Du, Juan;Qin, Fang;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [$Fe_2S_2$] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [$Fe_2S_2$] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [$Fe_2S_2$] cluster assembly in ferredoxin follows the AUS pathway.

Dispersion of Air Pollutants Dispersion and Odorous Materials in Cheon-an Second Industrial Complex (하절기 천안 제 2산업단지의 대기오염확산 및 악취물질에 관한 연구)

  • Chung, Jin-Do;Hong, Jeng-Hee;Kim, Su-Young;Kim, Jung-Tae;Choi, So-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1316-1322
    • /
    • 2006
  • The purpose of this study is to analyze the pattern distribution of the odorous compounds and air pollutants from the inventory sources in the Cheon-an second industrial complex. Twelve analysis including specified odor materials and air pollutants were concurrently measured during the month of August, 2005 to evalaute odor emission characterization in m3;or treatment facilities. Also, Concentration of air pollutants has been calculated by ISCST3 in ISC3 models. A Korean air diffusion modeling software, Air Master, was developed on a basis of diffusion theories adopted in U.S. EPA's ISC3 model to assess the air quality impact from the stacks. This investigation will be executed how large the complex pollutant sources such as industrial complex contribute to atmospheric environment and air quality of the surrounding the area as predicting by comparing and analyzing results of odorous compounds and air pollutants diffusion concentration model.

A Development of Air Dispersion Modeling Software, AirMaster (대기확산 모델링 Software, AirMaster 개발)

  • Koo, Youn-Seo;Yoon, Hee-Young;Kim, Sung-Tae;Jeon, Kyung-Seok;Park, Sung-Soon;Kweon, Hee-Yong;Hwang, Ju-Hyun;Kim, Jong-Hwa;Choi, Jong-Keun;Lee, Im-Hak
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • A Korean air dispersion modeling software, AirMaster, was developed on a basis of dispersion theories adopted in U.S. EPA's ISC3 (Industrial Source Complex - version 3) model to assess the air quality impact from the stacks. Key characteristics of AirMaster are as follows: 1) The building downwash effect can be easily simulated; 2) The screen, long term, and short term models can be run independently; 3) The input data to run the model such as meteorological and terrain data are supplied automatically from the databases in AirMaster; and 4) The modeling procedure is easy and simple under the GUI window environment. In order to validate AirMaster, comparisons with ISC3 model and Indianapolis tracer experiment were carried out. It was shown that AirMaster was identical to ISCST3 and ISCLT3 models in predicting the 1 hr to annual concentrations from the stack under various stack emission and meteorological conditions. The 1 hr concentrations predicted by AirMaster also showed a good agreement with the Indianapolis tracer measurements.

  • PDF

Develpment of Textile-based Organic Solar Cell

  • Lee, Seung-U;Kim, Yeong-Min;Jeon, Ji-Hun;Lee, Yeong-Hun;Divij, Bhatia;Choe, Deok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.460-460
    • /
    • 2014
  • Organic photovoltaic cells (OPV) have been extensively studied due to their unique properties such as flexibility, light-weight, easy processability, cost-effectiveness, and being environmental friendly. These advantages make them an attractive candidate for application in various novel fields and promising development with new features. Photovoltaic cell-integrated textiles have greatly attractive features as a power source for the smart textile solutions, and OPV is most ideal form factor due to advantage of flexibility. In this study, we develop a textile-based OPV through various experimental methods and we suggest the direction for the design of the photovoltaic textile. We used a textile electrode and tried to various layouts for textile-based OPV. Finally, we determined the contact area by using Hertzian theory for the calculation of power conversion efficiency (PCE). Based on the results of calculation, the short circuit current density, Isc, was $13.11mA/cm^2$ under AM 1.5condition and the PCE was around 2.5%.

  • PDF