• Title/Summary/Keyword: Irrigation water requirement

Search Result 102, Processing Time 0.026 seconds

Calculation of Effective Rainfalls in Paddy Fields Using Large Lysimeters (대형 Lysimeter를 이용한 논에서의 유효우량의 계산)

  • 최승만;정하;최진용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.75-80
    • /
    • 1999
  • The water requirement of crops in paddy fields is composed of evapotranspiration and infiltration. The determination of effective rainfall has the great significance for the irrigation managements and system design. There are numerous methods to estimate effective rainfall. The FreeBoard Model(FBM), ond of them , is popular because it can describe the algorithm of effective rainfal with simplified and general formation. The purpose of this study is to evaluate effective rainfall by field measurement , to compare this closely with the results from freeboard model and modified freeboard model , and to find out which of two models is more consistent with the results obtained by measurements.

Economy analysis of cost required for organic rice cultivation in two cultivation techniques

  • Kwon, Young-Rip;Choi, In-Young;Lee, Yong-Mahn;Choi, Dong-Chil;Kim, Yong-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.92-95
    • /
    • 2011
  • The initial investment of rice cultivation by mechanical technique was high. This was only due to the cost of planting machine. We analysed the overall cost (without machine cost) and benefits of the two methods, it manifested that the mechanical method is very much beneficial over traditional rice cultivation technique. We observed that the requirement of soil, irrigation water, number of seeds etc. decreased in mechanical cultivation technique while net income increase by 13.07% with 80% government subsidy. Furthermore, the initial rooting was quicker, growth and development of pot raised seedlings was better than the traditional technique. Hence, this technique can give better return to the farmers with the help of government subsidy.

Assessment of Water Control Model for Tomato and Paprika in the Greenhouse Using the Penman-Monteith Model (Penman-Monteith을 이용한 토마토와 파프리카의 증발산 모델 평가)

  • Somnuek, Siriluk;Hong, Youngsin;Kim, Minyoung;Lee, Sanggyu;Baek, Jeonghyun;Kwak, Kangsu;Lee, Hyondong;Lee, Jaesu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.209-218
    • /
    • 2020
  • This paper investigated actual crop evapotranspiration (ETc) of tomato and paprika planted in test beds of the greenhouse. Crop water requirement (CWR) is the amount of water required to compensate ETc loss from the crop. The main objectives of the study are to assess whether the actual crop watering (ACW) was adequate CWR of tomato and paprika and which amount of ACW should be irrigated to each crop. ETc was estimated using the Penman-Monteith model (P-M) for each crop. ACW was calculated from the difference of amount of nutrient supply water and amount of nutrient drainage water. ACW and CWR of each crop were determined, compared and assessed. Results indicated CWR-tomato was around 100 to 1,200 ml/day, while CWR-paprika ranged from 100 to 500 ml/day. Comparison of ACW and CWR of each crop found that the difference of ACW and CWR are fluctuated following day of planting (DAP). However, the differences could divide into two phases, first the amount of ACWs of each crop are less than CWR in the initial phase (60 DAP) around 500 ml/day and 91 ml/day, respectively. Then, ACWs of each crop are greater than the CWR after 60 DAP until the end of cultivation approximately 400 ml/day in tomato and 178 ml/day in paprika. ETc assessment is necessary to correctly quantify crop irrigation water needs and it is an accurate short-term estimation of CWR in greenhouse for optimal irrigation scheduling. Thus, reducing ACW of tomato and paprika in the greenhouse is a recommendation. The amount of ACW of tomato should be applied from 100 to 1,200 ml/day and paprika is 100 to 500 ml/day depend on DAP.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on the Growth. Yield of Rice Plants and Its Optimum Facilities. (수환관개방법과 적정시설연구 (수환관개의 방법의 차이가 수축생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구))

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1534-1548
    • /
    • 1969
  • This experiment was conducted, making use of the 'NONG-RIM6' arecommended variety of rice for the year of 1968. Main purposes of the experiment are to explore possibilities of; a) ways and means of saving irringation water and, b) overcoming drought at the same time so that an increased yield in rice could be resulted in. Specifically, it was tried to determine the effects of the Rotation irrigation method combined with differentiated thickness of lining upon the growth and yield of rice. Some of the major findings are summarized in the following. 1) The different thicknesses show a significant relationship with the weight of 1,000 grains. In the case of 9cm lined plot, the grain weight is 23.5grams, the heaviest. Next in order is 3cm lined plot, 6cm lined plot, control plot, and wheat straw lined-plot. 2) In rice yield, it is found that there is a considerably moderate significant relationship with both the different thickness of lining and the number of irrigation, as shown in the table. 3) There is little or no difference among different plots in terms of a) physical and chemical properties of soil, b) quality of irrigation water, c) climatic conditions, and rainfalls. 4) It is found that there is a significant relationship between differences in the method of rotation irrigation and the number of ears per hill. The plot irrigated at an interval of 7 days shows 17.4 ears and plot irrigated at an interval of 6 days, 16.3 5) In vinyl-treated plots, it is shown that both yield and component elements are greatest in the case of the plot ith whole of $3cm/m^2$ Next in order are the plot with a hole of $2cm/m^2$ the plot with a hole of $1cm/m^2$ In the case of the plot with no hole it is found that both yield and component elements are decreased as compared to the control plot. 6) The irrigation water reqirement is measured for the actual irrigation days of 72 which are the number subtracted the days of rainfall of 30 from the total irrigation days of 102. It is found that the irrigation water requirement for the uncontrol plot is 1,590mm as compared to 876mm(44.9% saved) for the 9cm-lined plot, 959mm(39.7% saved) for the 6cm-lined plot 1,010mm(36% saved) for the 3cm-lined plot and 1,082mm(32% saved) for the wheat straw lined plot. In the case of the Rotation irrigation method it is found that the water requirement for the plot irrigated at an interval of 8 days is 538mm(65% saved), as compared to 617mm(61.6% saved) for plot irrigated at an interval of 7 day 672mm(57.7% saved) for plot irrigated at an interval of 6day, 746mm(53.0% saved) for the plot irrigated at an interval of 5 days, 890mm 44.0% saved) for the plot irrigated at an interval of 4 days, and 975mm(38.6% saved) for the plot irrigated at an interval of 3 days. 7) The rate of evapotranspiration is found 2.8 around the end of month of July, as compared to 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of September. 8) It is found that the saturation quantity of 30mm per day is decreased to 20mm per day though the use of vinyl covering. 9) The husking rate shows 75 per cent which is considered better.

  • PDF

Regionalized Regression Model for Monthly Streamflow in Korean Watersheds (韓國河川의 月 流出量 推定을 위한 地域化 回歸模型)

  • Kim, Tai-Cheol;Park, Sung-Woo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.106-124
    • /
    • 1984
  • Monthly streanflow of watersheds is one of the most important elements for the planning, design, and management of water resources development projects, e.g., determination of storage requirement of reservoirs and control of release-water in lowflow rivers. Modeling of longterm runoff is theoretically based on water-balance analysis for a certain time interval. The effect of the casual factors of rainfall, evaporation, and soil-moisture storage on streamflow might be explained by multiple regression analysis. Using the basic concepts of water-balance and regression analysis, it was possible to develop a generalized model called the Regionalized Regression Model for Monthly Streamflow in Korean Watersheds. Based on model verification, it is felt that the model can be reliably applied to any proposed station in Korean watersheds to estimate monthly streamflow for the planning, design, and management of water resources development projects, especially those involving irrigation. Modeling processes and properties are summarized as follows; 1. From a simplified equation of water-balance on a watershed a regression model for monthly streamflow using the variables of rainfall, pan evaporation, and previous-month streamflow was formulated. 2. The hydrologic response of a watershed was represented lumpedly, qualitatively, and deductively using the regression coefficients of the water-balance regression model. 3. Regionalization was carried out to classify 33 watersheds on the basis of similarity through cluster analysis and resulted in 4 regional groups. 4. Prediction equations for the regional coefficients were derived from the stepwise regression analysis of watershed characteristics. It was also possible to explain geographic influences on streamflow through those prediction equations. 5. A model requiring the simple input of the data for rainfall, pan evaporation, and geographic factors was developed to estimate monthly streamflow at ungaged stations. The results of evaluating the performance of the model generally satisfactory.

  • PDF

Application of OECD Agricultural Water Use Indicator in Korea (우리나라에 적합한 OECD 농업용수 사용지표의 설정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.321-327
    • /
    • 2006
  • In Korea, there is a growing competitive for water resources between industrial, domestic and agricultural consumer, and the environment as many other OECD countries. The demand on water use is also affecting aquatic ecosystems particularly where withdrawals are in excess of minimum environmental needs for rivers, lakes and wetland habits. OECD developed three indicators related to water use by the agriculture in above contexts : the first is a water use intensity indicator, which is expressed as the quantity or share of agricultural water use in total national water utilization; the second is a water stress indicator, which is expressed as the proportion of rivers (in length) subject to diversion or regulation for irrigation without reserving a minimum of limiting reference flow; and the third is a water use efficiency indicator designated as the technical and the economic efficiency. These indicators have different meanings in the aspect of water resource conservation and sustainable water use. So, it will be more significant that the indicators should reflect the intrinsic meanings of them. The problem is that the aspect of an overall water flow in the agro-ecosystem and recycling of water use not considered in the assessment of agricultural water use needed for calculation of these water use indicators. Namely, regional or meteorological characteristics and site-specific farming practices were not considered in the calculation of these indicators. In this paper, we tried to calculate water use indicators suggested in OECD and to modify some other indicators considering our situation because water use pattern and water cycling in Korea where paddy rice farming is dominant in the monsoon region are quite different from those of semi-arid regions. In the calculation of water use intensity, we excluded the amount of water restored through the ground from the total agricultural water use because a large amount of water supplied to the farm was discharged into the stream or the ground water. The resultant water use intensity was 22.9% in 2001. As for water stress indicator, Korea has not defined nor monitored reference levels of minimum flow rate for rivers subject to diversion of water for irrigation. So, we calculated the water stress indicator in a different way from OECD method. The water stress indicator was calculated using data on the degree of water storage in agricultural water reservoirs because 87% of water for irrigation was taken from the agricultural water reservoirs. Water use technical efficiency was calculated as the reverse of the ratio of irrigation water to a standard water requirement of the paddy rice. The efficiency in 2001 was better than in 1990 and 1998. As for the economic efficiency for water use, we think that there are a lot of things to be taken into considerations to make a useful indicator to reflect socio-economic values of agricultural products resulted from the water use. Conclusively, site-specific, regional or meteorogical characteristics as in Korea were not considered in the calculation of water use indicators by methods suggested in OECD(Volume 3, 2001). So, it is needed to develop a new indicators for the indicators to be more widely applicable in the world.

Topdressing method of Potassium for the better efficiency in rice (수도(水稻) 가리시비(加里施肥) 효율향상(効率向上)을 위(爲)한 추비방법(追肥方法))

  • Oh, Wang Keun;Ryu, In Soo;Park, Hoon;Kim, Woo In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.4
    • /
    • pp.199-217
    • /
    • 1975
  • For the establishment of efficient method of potassium topdressing on rice the optimum time and amount were investigated and discussed on the basis of available data from nutriophysiological studies, soil characteristics and fertilizer trials in fields. The followings were pointed out. 1. According to yield rice plants require more potassium around heading under water culture. 2. Potassium involves in harvest index, filled grain ratio, grain weight and number of spikelets per panicle. 3. Potassium is lost after heading in most fields in spite of highest requirement during this period. 4. The higher $K_2O/N$ ratio in straw at harvest is, the higher the yield. 5. Relatively low efficiency of potassium fertilizer under the field condition may be due to improper application method rather than natural supply from soil and irrigation water. 6. Appropriate topdressing time appears at in effective tillering stage for the prevention of nitrogen excess and at 15 to 20 days after transplanting, ear formation stage and 5 days after heading for the prevention of soil reduction damage. Two times of topdressing for clayey soil and three times for sandy soil seems reasonable in practice together with nitrogen topdressing, 7. The reasonable ratio basal to topdressing of potassium fertlizer seems to be 2/3 and $N/K_2O$ ratio of fertilization for ear formation stage appeared also as 2/3.

  • PDF

Studies on uptake of lead by crops and reduction of it's damage -III. Effect of water management and lime application on Pb uptake in paddy rice (농작물(農作物)에 대(對)한 납(Pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -III. 수도(水稻)의 납 흡수이행(吸收移行)에 대(對)한 물관리(管理) 및 석회물질(石灰物質)의 효과)

  • Kim, Bok-Young;Kim, Kyu-Sik;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 1986
  • A pot experiment was conducted to find out the effects of water management and application of slaked lime and wollastonite on Pb uptake of rice in a Pb added soil. The soil was adjusted to 0, 150, 300 and 600 ppm of Pb concentration. The slake lime was applied at the equivalent amount of lime requirement with 150kg/10a adding and the wollastonite, 200kg/10a, respectively. The results obtained were as follows. 1. The lead contents in leaf stem and brown rice increased with increasing the soil Pb content and the ratio of Pb/(Ca+Mg) equivalent in soil but they showed no influence on yields. 2. The application of lime and wollastonite reduced Pb content in plant. 3. The lead content in plant was higher in intermittently irrigated treatment than in submersed irrigation. 4. The soil pH was increased in the order of lime, wollastonite and control. 5. $1N-NH_4$ OAC soluble Pb content in soil was higher in the submersed irrigation than in the intermittently irrigated and was higher in wollastonite application treatment than the slaked lime after harvesting.

  • PDF

Effect of Water Management and Lime Application on the Growth and Copper Uptake of Paddy Rice (수도(水稻)의 동피해(銅被害)에 대한 물관리(管理) 및 석회물질(石灰物質)의 효과(效果))

  • Kim, Kyu-Sik;Kim, Bok-Young;Lee, Min-Hyo;Han, Ki-Hak;Kim, Maun-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1985
  • A pot experiment was conducted to find out the effects of water management, slaked lime and wollastonite on growth and Cu uptake of rice at Cu added soil. The soil was adjusted to 0, 50, 100 and 200 ppm concentration of Cu. The application amount of slaked lime was the lime requirement plus 150 ㎏/l0a and wollastonite 200 ㎏/10a, respectively. The copper concentration in soil which reduced yield significantly was 133.1 ppm for submersion and 136.8 ppm for intermittent irrigation. The application of lime and wollastonite reduced Cu content in brown rice as well as increased rice yields compared to that of no lime. The copper content in plant was increased with increasing soil Cu concentration, however, reduced with submersion and application of slaked lime, and increased with increasing the ratio of Cu/Ca+Mg equivalent in soil.

  • PDF